Storm Trident示例Aggregator

Posted nickt

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Storm Trident示例Aggregator相关的知识,希望对你有一定的参考价值。

Aggregator首先在输入流上运行全局重新分区操作(global)将同一批次的所有分区合并到一个分区中,然后在每个批次上运行的聚合功能,针对Batch操作。与ReduceAggregator很相似。

省略部分代码,省略部分可参考:https://blog.csdn.net/nickta/article/details/79666918

static class State {  
        int count = 0;  
    }  
FixedBatchSpout spout = new FixedBatchSpout(new Fields("user", "score"), 3,    
                new Values("nickt1", 4),   
                new Values("nickt2", 7),    
                new Values("nickt3", 8),   
                new Values("nickt4", 9),    
                new Values("nickt5", 7),   
                new Values("nickt6", 11),   
                new Values("nickt7", 5)   
                );   
        spout.setCycle(false);   
        TridentTopology topology = new TridentTopology();   
        topology.newStream("spout1", spout)   
                .shuffle()   
                .each(new Fields("user", "score"),new Debug("shuffle print:"))  
                .parallelismHint(5)  
                .aggregate(new Fields("score"), new BaseAggregator<State>() {  
                    //在处理每一个batch的数据之前,调用1次  
                    //空batch也会调用  
                    @Override  
                    public State init(Object batchId, TridentCollector collector) {  
                        return new State();  
                    }  
                    //batch中的每个tuple各调用1次  
                    @Override  
                    public void aggregate(State state, TridentTuple tuple, TridentCollector collector) {  
                        state.count = tuple.getInteger(0) + state.count;  
                    }  
                    //batch中的所有tuples处理完成后调用   
                    @Override  
                    public void complete(State state, TridentCollector collector) {  
                        collector.emit(new Values(state.count));  
                    }  
                      
                }, new Fields("sum"))  
                .each(new Fields("sum"),new Debug("sum print:"))  
                .parallelismHint(5);  

输出:

[partition4-Thread-136-b-0-executor[37 37]]> DEBUG(shuffle print:): [nickt1, 4]
[partition4-Thread-136-b-0-executor[37 37]]> DEBUG(shuffle print:): [nickt3, 8]
[partition3-Thread-118-b-0-executor[36 36]]> DEBUG(shuffle print:): [nickt2, 7]
[partition4-Thread-136-b-0-executor[37 37]]> DEBUG(shuffle print:): [nickt5, 7]
[partition3-Thread-118-b-0-executor[36 36]]> DEBUG(shuffle print:): [nickt4, 9]
[partition3-Thread-118-b-0-executor[36 36]]> DEBUG(shuffle print:): [nickt6, 11]
[partition1-Thread-82-b-1-executor[39 39]]> DEBUG(sum print:): [19]
[partition2-Thread-66-b-1-executor[40 40]]> DEBUG(sum print:): [27]
[partition4-Thread-136-b-0-executor[37 37]]> DEBUG(shuffle print:): [nickt7, 5]
[partition3-Thread-54-b-1-executor[41 41]]> DEBUG(sum print:): [5]

以上是关于Storm Trident示例Aggregator的主要内容,如果未能解决你的问题,请参考以下文章

Storm Trident示例shuffle&parallelismHint

Storm Trident示例ReducerAggregator

Storm Trident示例partitionBy

Storm Trident示例function, filter, projection

storm trident function函数

storm trident function函数