Time Limit: 80 Sec Memory Limit: 512 MB
Submit: 1220 Solved: 550
[Submit][Status][Discuss]
Description
给下N,M,K.求
Input
输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示。
Output
如题
Sample Input
1 2
3 3
Sample Output
20
HINT
1<=N,M,K<=5000000,1<=T<=2000
题解:
JudgeOnline/upload/201603/4407.rar
Source
命题人:成都七中张耀楠,鸣谢excited上传。
题解
\[\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)^k\]
\[=\sum_{d=1}^{min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}d^k\times[gcd(i,j)=k]\]
\[=\sum_{d=1}^{min(n,m)}d^k\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}[gcd(i,j)=1]\]
\[=\sum_{d=1}^{min(n,m)}d^k\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}\sum_{t|gcd(i,j)}\mu(t)\]
\[=\sum_{d=1}^{min(n,m)}d^k\sum_{t=1}^{min(\lfloor \frac{n}{d} \rfloor,\lfloor \frac{m}{d} \rfloor)}\mu(t)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}\sum_{t|i}\sum_{t|j}1\]
\[=\sum_{d=1}^{min(n,m)}d^k\sum_{t=1}^{min(\lfloor \frac{n}{d} \rfloor,\lfloor \frac{m}{d} \rfloor)}\mu(t)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{t|i}1\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}\sum_{t|j}1\]
\[=\sum_{d=1}^{min(n,m)}d^k\sum_{t=1}^{min(\lfloor \frac{n}{d} \rfloor,\lfloor \frac{m}{d} \rfloor)}\mu(t)\lfloor\frac{n}{dt}\rfloor\lfloor\frac{m}{dt}\rfloor\]
然后呢?
然后复杂度就爆炸了。
其实化式子熟练了一边写一遍就出来了,不用推这么多步
然后有一个有点套路的东西(这个至少我是第三次见了)
令\(T=dt\),有
\[\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)^k\]
\[=\sum_{T=1}^{min(n,m)}\lfloor \frac{n}{T} \rfloor \lfloor\frac{m}{T}\rfloor\sum_{d|T}\mu(\frac{T}{d})d^k\]
不难发现\(g(x)=d^k\)是一个积性函数(还是一个完全积性函数)
\(\sum_{d|T}\mu(\frac{T}{d})d^k\)这东西其实就是\(\mu\)和\(g\)的卷积
设\(f(T)=(\mu*g)(T)=\sum_{d|T}\mu(\frac{T}{d})d^k\)
这东西显然可以线筛
怎么筛呢?
线筛三步走:
第一步,T为质数时,\(f(T)=T^k-1\)
第二步,T由他的最小质因子\(a\)(次数唯一)与另一个数\(b\)相乘得到时(此时两个数互质),有\(f(T)=f(a)f(b)\)
第三步,T是由他的最小质因子\(a\)与另一个数\(b\)相乘得到,且\(a|b\)时(此时两个数不互质),我们设\(ab=a^cq,q=\frac{b}{a^{c-1}}\),有\(f(T)=f(ab)=f(a^cq)=f(a^c)f(q)\)
考虑从前面递推过来
\[f(\frac{T}{a})=f(a^{c-1})f(q)=f(q)(a^{k(c-1)}-a^{k(c-2)})\]
\[f(T)=f(a^c)f(q)=f(q)(a^{kc}-a^{k(c-1)})\]
不难发现
\[f(T)=f(\frac{T}{a})a^k\]
完工,分块算即可。(上面式子有个地方我写的\(-\),zyf神犇(%%%%%)的博客里写的是\(+\),如有错误还请指正)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <map>
#include <cmath>
inline long long max(long long a, long long b){return a > b ? a : b;}
inline long long min(long long a, long long b){return a < b ? a : b;}
inline void swap(long long &x, long long &y){long long tmp = x;x = y;y = tmp;}
inline void read(long long &x)
{
x = 0;char ch = getchar(), c = ch;
while(ch < '0' || ch > '9') c = ch, ch = getchar();
while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
if(c == '-') x = -x;
}
const long long INF = 0x3f3f3f3f3f3f3f3f;
const long long MAXN = 5000000;
const long long MOD = 1e9 + 7;
long long pow(long long a, long long b)
{
long long r = 1, base = a;
for(;b;b >>= 1)
{
if(b & 1) r *= base, r %= MOD;
base *= base, base %= MOD;
}
return r;
}
long long t, k, p[MAXN + 10], bp[MAXN + 10], tot, f[MAXN], n, m;
void make_f()
{
f[1] = 1;
for(long long i = 2;i <= MAXN;++ i)
{
if(!bp[i]) p[++ tot] = i, f[i] = (pow(i, k) - 1 + MOD) % MOD;
for(long long j = 1;j <= tot && p[j] * i <= MAXN;++ j)
{
bp[i * p[j]] = 1;
if(i % p[j] == 0)
{
f[i * p[j]] = f[i] * pow(p[j], k) % MOD;
break;
}
f[i * p[j]] = f[i] * f[p[j]] % MOD;
}
}
for(long long i = 1;i <= MAXN;++ i) f[i] += f[i - 1];
}
int main()
{
read(t), read(k);
make_f();
for(;t;-- t)
{
read(n), read(m);
long long ans = 0, r, mi = min(n, m);
for(long long T = 1;T <= mi;++ T)
{
r = min(n/(n/T), min(m/(m/T), mi));
ans += ((n/T) * (m/T)) % MOD * (f[r] - f[T - 1]) % MOD;
if(ans >= MOD) ans -= MOD;
T = r;
}
printf("%lld\n", ans);
}
return 0;
}