图实践经典问题一览

Posted 江湖小妞

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图实践经典问题一览相关的知识,希望对你有一定的参考价值。

图算是数据结构中比较难的问题,但是在实际中解决的问题也更多。

其中,在图结构中涉及的问题主要有:

图的存储:

  • 邻接表(Adjacency list):为每个节点建立一个链表存放与之连接的点.
  • 邻接矩阵(Adjacency matrix):n*n的矩阵,有边的是1,无边的是0.

最短路径:

  • Dijkstra:记录起点能够到达的所有节点的最短路径,这样,我们要找的终点一定在其中啊。
    • DIST(w) = min(DIST(w), DIST(u) + c(u, w))
    • 代码实现示例:
    • package com.realise;
      
      import java.util.Arrays;
      
      public class Dijkstra {
          static int max = 10000;
          
          public static int[] dijkstra(int[][] edge) {
              int n = edge.length;
              int[] res = new int[n];
              for(int i=0; i<n; i++)
                  res[i] = edge[0][i];
              for(int i=0; i<n; i++) {
                  for(int j=0; j<n; j++) {
                      if(res[j] + edge[j][i] < res[i])
                          res[i] = res[j] + edge[j][i];
                  }
              }
              return res;
          }
          
          
          public static void main(String[] args) {
              // TODO Auto-generated method stub
              int[][] edge = {
                      {0,20,50,30,max, max, max},
                      {max,0,25,max,max,70,max},
                      {max,max,0,40,25,50,max},
                      {max,max,max,0,55,max,max},
                      {max,max,max,max,0,10,70},
                      {max,max,max,max,max,0,50},
                      {max,max,max,max,max,max,0}
              };
              int[] res = dijkstra(edge);
              System.out.println(Arrays.toString(res));
          }
      
      }
      View Code

       

  • Floyd:又称插点法,可以寻找任意两点间的最短路径,允许图中带负权值的边,但不允许包含负权值的边组成的回路。
    • 代码实现示例:
    • package com.realise;
      
      /**
       * Floyd算法的实现
       * @author 
       *
       */
      public class Floyd {
          static int Max = 1000;
          
          public static int[][] floydRealise(int[][] edge) {
              int n = edge.length;
              int[][] a = new int[n][n];
              int[][] path = new int[n][n];
              //Initialize 
              for(int i=0; i<n; i++) {
                  for(int j=0; j<n; j++) {
                      a[i][j] = edge[i][j];
                      if(i != j && edge[i][j] < Max)
                          path[i][j] = i;
                      else
                          path[i][j] = 0;
                  }
              }
              //T(O) = O(n3)
              for(int i=0; i<n; i++) {
                  for(int j=0; j<n; j++) {
                      for(int k=0; k<n; k++) {
                          if(a[j][i] + a[i][k] < a[j][k]) {
                              a[j][k] = a[j][i] + a[i][k];
                              path[j][k] = path[i][k];
                          }
                      }
                  }
              }
              
              return a;
              
          }
          
          public static void main(String[] args) {
              // TODO Auto-generated method stub
           int[][] edge = {
                      {0,1,Max,4},
                      {Max,0,9,2},
                      {3,5,0,8},
                      {Max, Max, 6,0}
              };
              int[][] res = floydRealise(edge);
              for(int i=0; i<res.length; i++) {
                  for(int j=0; j<res.length; j++)
                      System.out.print(res[i][j] + " ");
                  System.out.println();
              }
          }
      
      }
      View Code

       

最小生成树

  • Prim算法:A为要求的生成树,将要计入到A中的下一条边(u, v),应是E种一条不在A中且最小成本的边。
    •            
    • 代码示例:华为的一道笔试题,使用Prim解决的,作为本个算法的示例程序:
    • import java.util.Scanner;
      import java.util.Vector;
      
      /**
       * 沿海有N个岛屿,为方便岛与岛之间的沟通,现规划对这些岛屿进行建桥,
       * 建桥的消耗和岛屿之间的距离成正比,如何规划才能使每个桥梁都能连通,且消耗最少
       * @author 
       *
       */
      public class Main {
          
          public static int prim(int[][] val) {
              if(val == null || val.length == 0 || val.length == 1)
                  return 0;
              boolean[] visited = new boolean[val.length];
              for(int i=0; i<visited.length; i++)
                  visited[i] = false;
              visited[0] = true;
              int count = 1;
              int res = 0;
              Vector<Integer> v = new Vector<Integer>();
              v.add(0);
              do {
                  int weight = Integer.MAX_VALUE;
                  int temp = -1;
                  for(Integer i : v) {
                      for(int j=0; j<val.length; j++) {
                          if(j != i && visited[j] == false && val[i][j] < weight) {
                              weight = val[i][j];
                              temp = j;
                          }
                      }
                  }
                  res += weight;
                  v.add(temp);
                  count++;
                  visited[temp] = true;
              } while(count < val.length);
              return res;
          }
          
          
          
          public static void main(String[] args) {
              /*input example:
              3
              0 990 692
              990 0 179
              692 179 0
              */
              Scanner sc = new Scanner(System.in);
              int N = sc.nextInt();
              sc.nextLine();
              String[] arr = new String[N];
              for(int i=0; i<N; i++) 
                  arr[i] = sc.nextLine();
              
              int[][] val = new int[N][N];
              for(int i=0; i<N; i++) {
                  String[] temp = arr[i].split(" ");
                  for(int j=0; j<temp.length; j++) 
                      val[i][j] = Integer.parseInt(temp[j]);
              }
              
      //        int[][] val = {{0, 10, 1000, 30, 100},{10, 0, 50, 1000, 1000}, {1000, 50, 0, 20, 10},
      //                {30, 1000, 20, 0, 60},{100, 1000, 10, 60, 0}};
              System.out.println(prim(val));
              
          }
      
      }
      View Code 
  •  Kruskal算法:将图中所有边的权重按大小排序,然后在每次添加放入边中以不构成回路为前提,每次选择一条权重最小的边加入生成树中。
    • 为了快速判断候选边e的加入是否会形成环,可以使用并查集。时间复杂度为:O(eloge).

图的搜索(遍历):其中要特别注意隐式图的搜索,一些问题乍一看可能不是图的问题,但是其实可以用图的方法解决!!!

  • 广度优先搜索BFS:辅助数据结构为队列,与树的层次遍历类似

 

  • 深度优先搜索DFS:辅助数据结构为,与树的先序/中序/后序遍历类似

 

  • 隐式图:在实践中,往往一看不是关于图的问题,但如果给定一个起始状态和一些规则,求解决方案的问题:往往可以根据这些规则,将各个状态建立边,然后BFS/DFS搜索方法,在解空间中搜索。

 

几个经典的问题:

  • 单词变换问题Word Ladder。http://www.cnblogs.com/little-YTMM/p/5502954.html
    • Given a pattern and a string str, find if str follows the same pattern.

      Here follow means a full match, such that there is a bijection between a letter in pattern and a non-empty word in str.

      Examples:

      1. pattern = "abba", str = "dog cat cat dog" should return true.
      2. pattern = "abba", str = "dog cat cat fish" should return false.
      3. pattern = "aaaa", str = "dog cat cat dog" should return false.
      4. pattern = "abba", str = "dog dog dog dog" should return false.
      代码如下:
      • public class Solution {
            public boolean wordPattern(String pattern, String str) {
                    Map<Character, String> map = new HashMap<Character, String> ();
                    Set<String> set = new HashSet<String>();
                    char[] ch = pattern.toCharArray();
                    String[] strr = str.split(" ");
                    if(ch.length != strr.length)
                        return false;
                    for(int i=0; i<ch.length; i++) {
                        if(!map.containsKey(ch[i]) && !set.contains(strr[i])) {
                            map.put(ch[i], strr[i]);
                            set.add(strr[i]);
                        } else {
                            if(set.contains(strr[i]) && !map.containsKey(ch[i]))
                                return false;
                            if(!map.get(ch[i]).equals(strr[i]))
                                return false;
                        }
                    }
                    return true;
            }
            
        }
        View Code
  • 周围区域问题。http://www.cnblogs.com/little-YTMM/p/5480942.html
      • 代码:
      • import java.util.LinkedList;
        import java.util.Queue;
        
        class Node {
            int x;
            int y;
            public Node(int x, int y) {
                this.x = x;
                this.y = y;
            }
        }
        class Regions {
            private int[] rowdi = {-1, 1, 0, 0};
            private int[] coldi = {0, 0, -1, 1};
            
            /**
             * BFS. 
             * Search begin from the edge to the interior. 
             * @param val
             * @return
             */
            public int[][] check(int[][] val) {
                if(val == null || val.length == 0 || val[0].length == 0)
                    return val;
                Queue<Node> q = new LinkedList<Node>();
                int row = val.length;
                int col = val[0].length;
                for(int i=0; i<row; i++) {
                    if(val[i][0] == 0) {
                        Node n = new Node(i, 0);
                        q.add(n);
                        val[i][0] = 2;
                    }
                    if(val[i][col-1] == 0) {
                        Node n = new Node(i, col-1);
                        q.add(n);
                        val[i][col-1] = 2;
                    }
                }
                for(int j=1; j<col-1; j++) {
                    if(val[0][j] == 0) {
                        Node n = new Node(0, j);
                        q.add(n);
                        val[0][j] = 2;
                    }
                    if(val[row-1][j] == 0) {
                        Node n = new Node(row-1, j);
                        q.add(n);
                        val[row-1][j] = 2;
                    }
                }
                while(!q.isEmpty()) {
                    Node n = q.remove();
                    for(int i=0; i<rowdi.length; i++) {
                        if( n.x+rowdi[i]<row && n.y+coldi[i] < col
                                && n.x+rowdi[i] >= 0 && n.y+coldi[i] >= 0) {
                            if(val[n.x+rowdi[i]][n.y+coldi[i]] == 0) {
                                Node t = new Node(n.x+rowdi[i], n.y+coldi[i]);
                                q.add(t);
                                val[n.x+rowdi[i]][n.y+coldi[i]] = 2;
                            }
                        }
                    }
                }
                for(int i=0; i<row; i++) {
                    for(int j=0; j<col; j++) {
                        if(val[i][j] == 2)
                            val[i][j] = 0;
                        else if(val[i][j] == 0)
                            val[i][j] = 1;
                    }
                }
                return val;
            }
        }
        
        
        public class SurroundedRegions {
        
            public static void main(String[] args) {
                int[][] val = {
                        {1,1,1,1,1},
                        {1,0,0,1,0},
                        {1,1,1,1,0},
                        {1,0,1,0,0},
                        {1,1,1,1,1}};
                Regions region = new Regions();
                int[][] res = region.check(val);
                for(int i=0; i<res.length; i++) {
                    for(int j=0; j<res[0].length; j++)
                        System.out.print(res[i][j] + " ");
                    System.out.println();
                }
            }
        
        }
        View Code
  • 八皇后问题。http://www.cnblogs.com/little-YTMM/p/5478140.html
      • 代码:
      • package com.eight;
        
        import java.util.ArrayList;
        import java.util.Arrays;
        
        class EightQueen {
            private int N; //The number of queens.
            private boolean[] column;
            private boolean[] maind;
            private boolean[] secondaryd;
            private ArrayList<int[]> result = new ArrayList<int[]>();
            
            
            
            /**
             * Initial the column, main diagonal, secondary diagonal to false,
             * which means there is no queen everywhere.
             * @param N
             */
            public void initQ(int N) {
                this.N = N;
                column = new boolean[N];
                maind = new boolean[2 * N - 1];
                secondaryd = new boolean[2 * N - 1];
                int i = 0;
                for(i=0; i<column.length; i++)
                    column[i] = false;
                for(i=0; i<maind.length; i++)
                    maind[i] = false;
                for(i=0; i<secondaryd.length; i++)
                    secondaryd[i] = false;
            }
            
            /**
             * the main function of lay queens.
             */
            public void queens() {
                int[] path = new int[N];
                calcQueen(path, 0);
            }
        
            private void calcQueen(int[] path, int row) {
                // TODO Auto-generated method stub
                if(row == N) {
                    result.add(path);
                    System.out.println(Arrays.toString(path));
                    return;
                }
                for(int col=0; col<N; col++) {
                    if(canLay(row, col)) {
                        path[row] = col;
                        column[col] = true;
                        maind[row-col+N-1] = true;
                        secondaryd[row+col] = true;
                        calcQueen(path, row+1);
                        
                        //BackTracking, important!!
                        column[col] = false;
                        maind[row-col+N-1] = false;
                        secondaryd[row+col] = false;
                    }
                }
            }
        
            /**
             * Judge if the position can lay a queen.
             * @param row
             * @param col
             * @return
             */
            private boolean canLay(int row, int col) {
                // TODO Auto-generated method stub
                return (!column[col] && !secondaryd[row+col] && !maind[row-col+N-1]);
            }
            
            
            public ArrayList<int[]> getResult() {
                return result;
            }
        }
        
        
        
        public class Queens {
        
            public static void main(String[] args) {
                EightQueen q = new EightQueen();
                q.initQ(8); // It is a eight queens problem.
                q.queens();
                
            }
        
        }
        //Some output instances:
        [0, 4, 7, 5, 2, 6, 1, 3]
        [0, 5, 7, 2, 6, 3, 1, 4]
        [0, 6, 3, 5, 7, 1, 4, 2]
        [0, 6, 4, 7, 1, 3, 5, 2]
        [1, 3, 5, 7, 2, 0, 6, 4]
        [1, 4, 6, 0, 2, 7, 5, 3]
        [1, 4, 6, 3, 0, 7, 5, 2]
        [1, 5, 0, 6, 3, 7, 2, 4]
        [1, 5, 7, 2, 0, 3, 6, 4]
        [1, 6, 2, 5, 7, 4, 0, 3]
        [1, 6, 4, 7, 0, 3, 5, 2]
        [1, 7, 5, 0, 2, 4, 6, 3]
        [2, 0, 6, 4, 7, 1, 3, 5]
        View Code
  • 数独问题。http://www.cnblogs.com/little-YTMM/p/5507841.html
      • 代码:
      • import java.util.Stack;
        
        class Help {
            int row;
            int col;
            int val;
        }
        public class Sudoku {
        
            /**
             * Use stack store the roads.
             * @param chess
             * @return
             */
            public static int[][] getSudoku(int[][] chess) {
                Stack<Help> stack = new Stack<Help>();
                int val = -1;
                for(int i=0; i<9; i++) {
                    for(int j=0; j<9; j++) {
                        if(chess[i][j] != 0)
                            continue;
                        boolean flag = false;
                        int k;
                        if(val == -1)
                            k = 0;
                        else 
                            k = val+1;
                        for(; k<10; k++) {
                            if(isValid(k, i, j, chess)) {
                                Help h = new Help();
                                h.row = i;
                                h.col = j;
                                h.val = k;
                                stack.add(h);
                                chess[i][j] = k;
                                val = -1;
                                flag = true;
                                
                            }
                            if(flag == true)
                                k = 10;
                        }
                        if(flag == false && !stack.isEmpty()) { //There is no road, backtracking
                            Help h = stack.pop();
                            i = h.row;
                            j = h.col-1;
                            val = h.val;
                            chess[i][j+1] = 0;
                        }
                    }
                }
                return chess;
            }
            
            /**
             * Judge if it is valid when chess[row][col] = k.
             * @param k
             * @param row
             * @param col
             * @param chess
             * @return
             */
            private static boolean isValid(int k, int row, int col, int[][] chess) {
                for(int i=0; i<9; i++)
                    if(chess[row][i] == k)
                        return false;
                for(int i=0; i<9; i++) 
                    if(chess[i][col] == k)
                        return false;
                int r = row/3, c = col/3;
                for(int i=r*3; i<r*3+3; i++) {
                    for(int j=c*3; j<c*3+3; j++) {
                        if(chess[i][j] == k)
                            return false;
                    }
                }
                return true;
            }
        
        
            public static void main(String[] args) {
                // TODO Auto-generated method stub
                int[][] a = {
                        {0,4,2,0,6,3,0,0,9},
                        {6,0,0,0,1,0,0,0,5},
                        {3,0,0,0,2,0,4,8,0},
                        {1,0,0,5,0,2,6,0,8},
                        {4,0,0,0,0,7,0,0,1},
                        {9,0,5,6,0,0,0,0,7},
                        {0,3,6,0,5,0,0,0,2},
                        {2,0,0,0,7,0,0,0,4},
                        {7,0,0,2,9,0,8,5,0}
                        
                    };
                int[][] res = getSudoku(a);
                for(int i=0; i<9; i++) {
                    for(int j=0; j<9; j++)
                        System.out.print(res[i][j] + " ");
                    System.out.println();
                }
            }
        
        }
        View Code
  • 所有括号的匹配问题。http://www.cnblogs.com/little-YTMM/p/5505522.html

      • 代码:
      • /**
             * Given the number N, return all of the correct brackets.
             * @param n
             * @return
             */
            @SuppressWarnings("unchecked")
            public static ArrayList<String> getBracketsOfN(int n) {
                @SuppressWarnings("rawtypes")
                ArrayList[] dp = new ArrayList[n+1];
                for(int i=0; i<dp.length; i++)
                    dp[i] = new ArrayList<String>();
                dp[0].add("");
                dp[1].add("()");
                if(n == 0) 
                    return dp[0];
                if(n == 1) 
                    return dp[1];
                int count = 2;
                while(count < n+1) {
                    ArrayList<String> lcount = dp[count];
                    for(int i=0; i<count; i++) {
                        ArrayList<String> l1 = dp[i];
                        ArrayList<String> l2 = dp[count-i-1];
                        for(int j=0; j<l1.size(); j++) {
                            for(int k=0; k<l2.size(); k++) {
                                StringBuffer sb = new StringBuffer();
                                sb.append(l1.get(j));
                                sb.append("(");
                                sb.append(l2.get(k));
                                sb.append(")");
                                lcount.add(sb.toString());
                            }
                        }
                    }
                    dp[count++] = lcount;
                }
                return dp[n];
            }
        View Code

 

以上是关于图实践经典问题一览的主要内容,如果未能解决你的问题,请参考以下文章

ML实践详细经典教程----用例图顺序图状态图类图包图协作图

数据流图及实践

Tensorflow简单实践系列:图和会话

一文通数据结构与算法之——图+常见题型与解题策略+Leetcode经典题

深度优先搜索原理与实践(java)

NetworkX 中按边和节点属性查询图的最佳实践