1007. Maximum Subsequence Sum (25) 动态规划

Posted fangxiaoneng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1007. Maximum Subsequence Sum (25) 动态规划相关的知识,希望对你有一定的参考价值。

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class Main {                                
	public static void main(String[] args) throws NumberFormatException, IOException {
		BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));
		int n=Integer.parseInt(bf.readLine());
		int arr[]=getArr(bf.readLine());
		int length=arr.length;
		int temp=0;
		int templeft=0;
		int right=length-1;
		int sum=0;
		int left=0;
		for(int i=0;i<length;i++){
			temp=temp+arr[i];
			if(temp<0){
				temp=0;
				templeft=i+1;
			}else if(temp>sum){
				sum=temp;
				left=templeft;
				right=i;
			}
		}
		System.out.println(sum+" "+left+" "+right);
	}
	public static int []getArr(String s){
		String arr[]=s.split(" ");
		int a[]=new int[arr.length];
		for(int i=0;i<arr.length;i++){
			a[i]=Integer.parseInt(arr[i]);
			
		}
		return a;
	}
}

  


Given a sequence of K integers { N1, N2, …, NK }. A continuous subsequence is defined to be { Ni, Ni+1, …, Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21
Sample Output:
10 1 4

以上是关于1007. Maximum Subsequence Sum (25) 动态规划的主要内容,如果未能解决你的问题,请参考以下文章

1007 Maximum Subsequence Sum(25 分)

1007 Maximum Subsequence Sum

1007. Maximum Subsequence Sum (25)

1007. Maximum Subsequence Sum (25)

1007. Maximum Subsequence Sum (25) 动态规划

1007 Maximum Subsequence Sum (25)(25 分)