斯坦福-随机图模型-week3.0_

Posted 邻泽居

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了斯坦福-随机图模型-week3.0_相关的知识,希望对你有一定的参考价值。


title: 斯坦福-随机图模型-week3.0
tags: note
notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation

斯坦福-随机图模型-week3.0

马尔科夫网络

pairwise markov networks 成对马尔科夫模型

图论模型中有有向图和无向图,对于无向图来说,运用到随机图论中就是马尔科夫模型。

在马尔科夫模型中,有一种模型十分有趣,他是成对马尔科夫模型。

我们首先看一个例子:

四个学生同时进行学习,并且他们会相互进行影响。

infinity function / compatibility funcutions.

加入老师再课堂上出现了一次口误,那个他们中的误解是如何进行相互影响的呢?

这个表格描述了两个人的快乐程度,如果两个人都听对了,那么他们都会获得30的快乐程度,如果两个人都听错了,那么他们的快乐程度也会很高。如果一个人听对了另外一个人听错了,那么他们的快乐程度就会相对比较低。

同样的我们可以为所有的联系都定义他们的快乐程度:

我们可以将所有的快乐程度相乘起来来获得一个综合的指数:

然后我们就可以对所有的幸福程度进行汇总,然后乘以相应的归一化系数,将他的和归为1。

好的我们现在可以讨论下理论上的事情了:

相关的术语

  1. 边界概率
  2. 条件概率
  3. 边界概率的条件概率

正常吉布斯分布

假设再一个全部互联的马尔科夫模型中。

我们考虑一个问题

**再一个全互联的马尔科夫网络中,如果共有n个变量,每个变量有d个值,那么一共需要多少参数才能描述我们的马尔科夫网络呢。

这个问题我们这样分析他,我们有个边,因此关联的矩阵的边长是d
所以我们有

吉布斯分布式用来简便的生成这些参数的。

我们使用标准参数

就是再重复我们前面例子里的工作,我们通过定义每条边的情况定义所有的gibbs因子:

然后把他们乘在一起:

然后我们对得到的数据进行标准化

触发形马尔科夫网络

触发形马尔科夫网络是一种,形成环的网络,比如是这样:

在上图中分别描述了
形成的环

因子化

直接使用问题讨论:

上面这三个都是正确的,因为他们都能表示相应的拓扑结构。

条件随机领域

以上是关于斯坦福-随机图模型-week3.0_的主要内容,如果未能解决你的问题,请参考以下文章

斯坦福-随机图模型-week1.5_

斯坦福-随机图模型-week2.1_

斯坦福-随机图模型-week1.7_

斯坦福-随机图模型-week1.0_

斯坦福-随机图模型-week1.6_

斯坦福-随机图模型-week1.3_