初识递归
‘‘‘
递归调用:
在调用一个函数的过程中,直接或者间接调用了该函数本身
‘‘‘
直接调用:
def func(): print(‘====>func‘) func() func()
间接调用:
def foo(): print(‘from foo‘) bar() def bar(): print(‘from bar‘) foo() foo()
来个栗子:
ef age(n): if n == 5: return 18 return age(n+1)+2 print(age(1)) 结果: 26
递归的最大深度——997
递归函数如果不受到外力的阻止会一直执行下去。关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997
拿什么来证明这个“997理论”呢?这里我们可以做一个实验:
ef foo(n): print(n) n += 1 foo(n) foo(1)
由此我们可以看出,未报错之前能看到的最大数字就是997.当然了,997是python为了我们程序的内存优化所设定的一个默认值,我们当然还可以通过一些手段去修改它:
import sys print(sys.setrecursionlimit(100000))
我们可以通过这种方式来修改递归的最大深度,刚刚我们将python允许的递归深度设置为了10w,至于实际可以达到的深度就取决于计算机的性能了。不过我们还是不推荐修改这个默认的递归深度,因为如果用997层递归都没有解决的问题要么是不适合使用递归来解决要么是你代码写的太烂了~~~
看到这里,你可能会觉得递归也并不是多么好的东西,不如while True好用呢!然而,江湖上流传这这样一句话叫做:人理解循环,神理解递归。所以你可别小看了递归函数,很多人被拦在大神的门槛外这么多年,就是因为没能领悟递归的真谛。而且之后我们学习的很多算法都会和递归有关系。来吧,只有学会了才有资本嫌弃!
一个列表嵌套很多层,用递归取出所有的值
l=[1,[2,3,[4,5,[6,7,[8,9,[10,11,[12,13]]]]]]] def func(l): for i in l: if isinstance(i,list): func(i) else: print(i) func(l) 结果: 1 2 3 4 5 6 7 8 9 10 11 12 13
递归函数与三级菜单
menu = { ‘北京‘: { ‘海淀‘: { ‘五道口‘: { ‘soho‘: {}, ‘网易‘: {}, ‘google‘: {} }, ‘中关村‘: { ‘爱奇艺‘: {}, ‘汽车之家‘: {}, ‘youku‘: {}, }, ‘上地‘: { ‘百度‘: {}, }, }, ‘昌平‘: { ‘沙河‘: { ‘老男孩‘: {}, ‘北航‘: {}, }, ‘天通苑‘: {}, ‘回龙观‘: {}, }, ‘朝阳‘: {}, ‘东城‘: {}, }, ‘上海‘: { ‘闵行‘: { "人民广场": { ‘炸鸡店‘: {} } }, ‘闸北‘: { ‘火车战‘: { ‘携程‘: {} } }, ‘浦东‘: {}, }, ‘山东‘: {}, }
#还记得之前写过的三级菜单作业么?现在咱们用递归来写一下~
def threeLM(dic): while True: for k in dic:print(k) key = input(‘input>>‘).strip() if key == ‘b‘ or key == ‘q‘:return key elif key in dic.keys() and dic[key]: ret = threeLM(dic[key]) if ret == ‘q‘: return ‘q‘ threeLM(menu)
用堆栈来实现:
l = [menu] while l: for key in l[-1]:print(key) k = input(‘input>>‘).strip() # 北京 if k in l[-1].keys() and l[-1][k]:l.append(l[-1][k]) elif k == ‘b‘:l.pop() elif k == ‘q‘:break