转自:http://blog.csdn.net/u010983881/article/details/77503519
题目
编写两个任意位数的大数相乘的程序,给出计算结果。比如:
题目描述: 输出两个不超过100位的大整数的乘积。
输入: 输入两个大整数,如1234567 和 123
输出: 输出乘积,如:151851741
或者
求 1234567891011121314151617181920 * 2019181716151413121110987654321 的乘积结果
- 1
分析
所谓大数相乘(Multiplication algorithm),就是指数字比较大,相乘的结果超出了基本类型的表示范围,所以这样的数不能够直接做乘法运算。
参考了很多资料,包括维基百科词条Multiplication algorithm,才知道目前大数乘法算法主要有以下几种思路:
- 模拟小学乘法:最简单的乘法竖式手算的累加型;
- 分治乘法:最简单的是Karatsuba乘法,一般化以后有Toom-Cook乘法;
- 快速傅里叶变换FFT:(为了避免精度问题,可以改用快速数论变换FNTT),时间复杂度O(N lgN lglgN)。具体可参照Sch?nhage–Strassen algorithm;
- 中国剩余定理:把每个数分解到一些互素的模上,然后每个同余方程对应乘起来就行;
- Furer’s algorithm:在渐进意义上FNTT还快的算法。不过好像不太实用,本文就不作介绍了。大家可以参考维基百科Fürer’s algorithm
解法
我们分别实现一下以上算法,既然不能直接使用乘法做运算,最简单最容易想到的办法就是模拟乘法运算。
1、模拟乘法手算累加
7 8 9 6 5 2
× 3 2 1 1
-----------------
7 8 9 6 5 2 <---- 第1趟
7 8 9 6 5 2 <---- 第2趟
.......... <---- 第n趟
-----------------
? ? ? ? ? ? ? ? <---- 最后的值用另一个数组表示
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
如上所示,乘法运算可以分拆为两步:
- 第一步,是将乘数与被乘数逐位相乘;
- 第二步,将逐位相乘得到的结果,对应相加起来。
这有点类似小学数学中,计算乘法时通常采用的“竖式运算”。用Java简单实现了这个算法,代码如下:
/**
* 大数相乘 - 模拟乘法手算累加
*/
public static Integer[] bigNumberMultiply(int[] arr1, int[] arr2){
ArrayList<Integer> result = new ArrayList<>(); //中间求和的结果
//arr2 逐位与arr1相乘
for(int i = arr2.length - 1; i >= 0; i--){
int carry = 0;
ArrayList<Integer> singleList = new ArrayList<>();
//arr2 逐位单次乘法的结果
for(int j = arr1.length - 1; j >= 0; j--){
int r = arr2[i] * arr1[j] + carry;
int digit = r % 10;
carry = r / 10;
singleList.add(digit);
}
if(carry != 0){
singleList.add(carry);
}
int resultCarry = 0, count = 0;
int k = 0;
int l = 0;
int offset = arr2.length - 1 - i; //加法的偏移位
ArrayList<Integer> middleResult = new ArrayList<>();
//arr2每位乘法的结果与上一轮的求和结果相加,从右向左做加法并进位
while (k < singleList.size() || l < result.size()) {
int kv = 0, lv = 0;
if (k < singleList.size() && count >= offset) {
kv = singleList.get(k++);
}
if (l < result.size()) {
lv = result.get(l++);
}
int sum = resultCarry + kv + lv;
middleResult.add(sum % 10); //相加结果从右向左(高位到低位)暂时存储,最后需要逆向输出
resultCarry = sum / 10;
count++;
}
if(resultCarry != 0){
middleResult.add(resultCarry);
}
result.clear();
result = middleResult;
}
Collections.reverse(result); //逆向输出结果
return result.toArray(new Integer[result.size()]);
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
看了以上的代码,感觉思路虽然很简单,但是实现起来却很麻烦,那么我们有没有别的方法来实现这个程序呢?答案是有的,接下来我来介绍第二种方法。
2、模拟乘法累加 - 改进
简单来说,方法二就是先不算任何的进位,也就是说,将每一位相乘,相加的结果保存到同一个位置,到最后才计算进位。
例如:计算98×21,步骤如下
9 8
× 2 1
-------------
(9)(8) <---- 第1趟: 98×1的每一位结果
(18)(16) <---- 第2趟: 98×2的每一位结果
-------------
(18)(25)(8) <---- 这里就是相对位的和,还没有累加进位
- 1
- 2
- 3
- 4
- 5
- 6
- 7
这里唯一要注意的便是进位问题,我们可以先不考虑进位,当所有位对应相加,产生结果之后,再考虑。从右向左依次累加,如果该位的数字大于10,那么我们用取余运算,在该位上只保留取余后的个位数,而将十位数进位(通过模运算得到)累加到高位便可,循环直到累加完毕。
核心代码如下:
/**
* 大数相乘方法二
*/
public static int[] bigNumberMultiply2(int[] num1, int[] num2){
// 分配一个空间,用来存储运算的结果,num1长的数 * num2长的数,结果不会超过num1+num2长
int[] result = new int[num1.length + num2.length];
// 先不考虑进位问题,根据竖式的乘法运算,num1的第i位与num2的第j位相乘,结果应该存放在结果的第i+j位上
for (int i = 0; i < num1.length; i++){
for (int j = 0; j < num2.length; j++){
result[i + j + 1] += num1[i] * num2[j]; // (因为进位的问题,最终放置到第i+j+1位)
}
}
//单独处理进位
for(int k = result.length-1; k > 0; k--){
if(result[k] > 10){
result[k - 1] += result[k] / 10;
result[k] %= 10;
}
}
return result;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
!!注意:这里的进位有个大坑,因为
result[]
数组是从左到右记录相对位的和(还没有进位),而最后的进位是从右向左累加进位,这样的话,如果最高位,也就是最左侧那一位的累加结果需要进位的话,result[]
数组就没有空间存放了。
而正好result[]
数组的最后一位空置,不可能被占用,我们就响应地把num1的第i位与num2的第j位相乘,结果应该存放在结果的第i+j位上的这个结果往后顺移一位(放到第i+j+1位
),最后从右向左累加时就多了一个空间。
3、分治 - Karatsuba算法
以上两种模拟乘法的手算累加型算法,他们都是模拟普通乘法的计算方式,时间复杂度都是O(n^2),而这个Karatsuba算法,时间复杂度仅有 O(nlog23)O(nlog2?3) 。下面,我就来介绍一下这个算法。
Karatsuba于1960年发明在 O(nlog23)O(nlog2?3) 步骤内将两个n位数相乘的Karatsuba算法。它反证了安德雷·柯尔莫哥洛夫于1956年认为这个乘法需要 Ω(n2)Ω(n2) 步骤的猜想。
首先来看看这个算法是怎么进行计算的,见下图:
图中显示了计算5678 * 1234
的过程,首先是拆分成abcd四个部分,然后分别计算ac
, bd
, (a+b)*(c+d)
,最后再用第三个算式的结果减去前面两个(其实得到的就是bc+ad
,但是减少了乘法步骤),然后,计算式1后面加4个0,计算式2后面不加,计算式3后面加2个0,再把这三者相加,就是正确结果。
接下来,就来证明一下这个算法的正确性。这是一幅来自Karatsuba Multiplication Algorithm – Python Code的图,我们来看看:
我们假设要相乘的两个数是x * y。我们可以把x,y写成:
这里的n是数字的位数。如果是偶数,则a和b都是n/2
位的。如果n是奇数,则你可以让a是n/2+1
位,b是n/2
位。(例如a = 12,b = 34;a = 123,b = 45),那么x*y
就变成了:
进一步计算,
对比之前的计算过程。结果已经呼之欲出了。这里唯一需要注意的两点就是:
(a * d + b * c)
的计算为了防止两次乘法,应该使用之前的计算- 这些乘法在算法里应该是递归实现的,数字很大时,先拆分,然后拆分出来的数字还是很大的话,就继续拆分,直到a * b已经是一个非常简单的小问题为之。这也是分治的思想。
我们举例来尝试一下这种算法,比如计算12345 * 6789
,我们让a = 12
,b = 345
。同时c = 6
,d = 789
。也就是:
那么a*c
,b*d
的结果如下:
最终结果就是:
以上就是使用分治的方式计算乘法的原理。上面这个算法,由 Anatolii Alexeevitch Karatsuba 于1960年提出并于1962年发表,所以也被称为 Karatsuba 乘法。
根据上面的思路,实现的Karatsuba乘法代码如下:
/**
* Karatsuba乘法
*/
public static long karatsuba(long num1, long num2){
//递归终止条件
if(num1 < 10 || num2 < 10) return num1 * num2;
// 计算拆分长度
int size1 = String.valueOf(num1).length();
int size2 = String.valueOf(num2).length();
int halfN = Math.max(size1, size2) / 2;
/* 拆分为a, b, c, d */
long a = Long.valueOf(String.valueOf(num1).substring(0, size1 - halfN));
long b = Long.valueOf(String.valueOf(num1).substring(size1 - halfN));
long c = Long.valueOf(String.valueOf(num2).substring(0, size2 - halfN));
long d = Long.valueOf(String.valueOf(num2).substring(size2 - halfN));
// 计算z2, z0, z1, 此处的乘法使用递归
long z2 = karatsuba(a, c);
long z0 = karatsuba(b, d);
long z1 = karatsuba((a + b), (c + d)) - z0 - z2;
return (long)(z2 * Math.pow(10, (2*halfN)) + z1 * Math.pow(10, halfN) + z0);
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
总结:
Karatsuba 算法是比较简单的递归乘法,把输入拆分成 2 部分,不过对于更大的数,可以把输入拆分成 3 部分甚至 4 部分。拆分为 3 部分时,可以使用下面的Toom-Cook 3-way
乘法,复杂度降低到 O(n^1.465)。拆分为 4 部分时,使用Toom-Cook 4-way
乘法,复杂度进一步下降到 O(n^1.404)。对于更大的数字,可以拆成 100 段,使用快速傅里叶变换FFT
,复杂度接近线性,大约是 O(n^1.149)。可以看出,分割越大,时间复杂度就越低,但是所要计算的中间项以及合并最终结果的过程就会越复杂,开销会增加,因此分割点上升,对于公钥加密,暂时用不到太大的整数,所以使用 Karatsuba 就合适了,不用再去弄更复杂的递归乘法。
测试程序
public class LeetcodeTest {
public static void main(String[] args) {
// String a = "1234567891011121314151617181920";
// String b = "2019181716151413121110987654321";
// String a = "999999999999";
// String b = "999999999999";
// String a = "24566";
// String b = "452053";
String a = "98";
String b = "21";
char[] charArr1 = a.trim().toCharArray();
char[] charArr2 = b.trim().toCharArray();
// 字符数组转换为int[]数组
int[] arr1 = new int[charArr1.length];
int[] arr2 = new int[charArr2.length];
for(int i = 0; i < charArr1.length; i++){
arr1[i] = charArr1[i] - ‘0‘;
}
for(int i = 0; i < charArr2.length; i++){
arr2[i] = charArr2[i] - ‘0‘;
}
// 开始计算
int[] result = LeetcodeTest.bigNumberMultiply2(arr1, arr2);
System.out.println(a + " * " + b + " = " + Arrays.toString(result).replace(", ", ""));
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
最后,是测试用例输出结果:
1234567891011121314151617181920 * 2019181716151413121110987654321 = [02492816912877266687794240983772975935013386905490061131076320]
999999999999 * 999999999999 = [999999999998000000000001]
24566 * 452053 = [11105133998]
98 * 21 = [2058]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8