[HEOI2015]兔子与樱花

Posted 蒟蒻JHY

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[HEOI2015]兔子与樱花相关的知识,希望对你有一定的参考价值。

题目描述

很久很久之前,森林里住着一群兔子。有一天,兔子们突然决定要去看樱花。兔子们所在森林里的樱花树很特殊。樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点。这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花。樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,如果i为叶子节点,则son(i) = 0

现在兔子们觉得樱花树上节点太多,希望去掉一些节点。当一个节点被去掉之后,这个节点上的樱花和它的儿子节点都被连到删掉节点的父节点上。如果父节点也被删除,那么就会继续向上连接,直到第一个没有被删除的节点为止。

现在兔子们希望计算在不违背最大载重的情况下,最多能删除多少节点。

注意根节点不能被删除,被删除的节点不被计入载重。

输入输出格式

输入格式:

 

第一行输入两个正整数,n和m分别表示节点个数和最大载重

第二行n个整数c_i,表示第i个节点上的樱花个数

接下来n行,每行第一个数k_i表示这个节点的儿子个数,接下来k_i个整数表示这个节点儿子的编号

 

输出格式:

 

一行一个整数,表示最多能删除多少节点。

 

输入输出样例

输入样例#1: 
10 4
0 2 2 2 4 1 0 4 1 1
3 6 2 3
1 9
1 8
1 1
0
0
2 7 4
0
1 5
0
输出样例#1: 
4

说明

对于30%的数据,1 <= n <= 5000, 1 <= m <= 100, 0 <= c_i <= 100

对于70%的数据,1 <= n <= 200000, 1 <= m <= 2000, 0 <= c_i <= 1000

对于100%的数据,1 <= n <= 2000000, 1 <= m <= 100000, 0 <= c_i <= 1000

数据保证初始时,每个节点樱花数与儿子节点个数之和大于0且不超过m

 

HEOI2015 T1。

一上来的题应该不能太难吧,,,,,所以我直接往贪心上想了2333,幸好的确是个贪心题。

我们考虑一个点删除带来的影响:(我们设一个节点的重量参数 h[i] = son[i] + c[i])

    一个点x被删除,仅会影响父节点的重量参数,且会让它的重量参数 +=c[x]+son[x]-1,也就是x的重量参数-1。

所以我们可以先预处理出所有点的重量参数,因为上限都是m,所以就可以直接从下向上贪心了。

 

#include<bits/stdc++.h>
#define ll long long
#define maxn 2000005
using namespace std;
int to[maxn],ne[maxn];
int hd[maxn],n,m,c[maxn];
int siz[maxn],num=0,ans;

inline int read(){
	int x=0; char ch=getchar();
	while(!isdigit(ch)) ch=getchar();
	for(;isdigit(ch);ch=getchar()) x=x*10+ch-‘0‘;
	return x;
}

void dfs(int x){	
	int T=0,a[siz[x]+3];
	siz[x]+=c[x];
	for(int i=hd[x];i;i=ne[i]){
		dfs(to[i]),a[++T]=siz[to[i]];
	}
	sort(a+1,a+T+1);
	for(int i=1;i<=T;i++){
		if(siz[x]+a[i]-1<=m){
			siz[x]+=a[i]-1,ans++;
		}
		else return;
	}
}

int main(){
	scanf("%d%d",&n,&m);
	for(int i=0;i<n;i++) c[i]=read();
	int K,SON;
	for(int i=0;i<n;i++){
		siz[i]=K=read();
		while(K--){
			SON=read();
			to[++num]=SON,ne[num]=hd[i],hd[i]=num;
		}
	}
	
	dfs(0);
	
	printf("%d\n",ans);
	return 0;
}

  

以上是关于[HEOI2015]兔子与樱花的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ4027[HEOI2015]兔子与樱花 贪心

HEOI2015 兔子与樱花

兔子与樱花[HEOI2015]

[HEOI2015]兔子与樱花

bzoj4027,[HEOI2015]兔子与樱花

bzoj4027 [HEOI2015]兔子与樱花