An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5 88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7 88 70 61 96 120 90 65
Sample Output 2:
88
1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm> 4 using namespace std; 5 typedef struct NODE{ 6 struct NODE* lchild, *rchild; 7 int key; 8 int height; 9 }node; 10 int getHeight(node* root){ 11 if(root == NULL) 12 return 0; 13 else return root->height; 14 } 15 void updateHeight(node *root){ 16 root->height = max(getHeight(root->lchild), getHeight(root->rchild)) + 1; 17 } 18 void L(node* &root){ 19 node* temp = root; 20 root = root->rchild; 21 updateHeight(root); 22 temp->rchild = root->lchild; 23 root->lchild = temp; 24 updateHeight(temp); 25 } 26 void R(node* &root){ 27 node *temp = root; 28 root = root->lchild; 29 updateHeight(root); 30 temp->lchild = root->rchild; 31 root->rchild = temp; 32 updateHeight(temp); 33 } 34 void insert(node* &root, int key){ 35 if(root == NULL){ //此处可获得插入节点的信息 36 node* temp = new node; 37 temp->lchild = NULL; 38 temp->rchild = NULL; 39 temp->key = key; 40 temp->height = 1; 41 root = temp; 42 return; 43 } 44 if(key < root->key){ //此处可获得距离插入节点最近得父节点得信息 45 insert(root->lchild, key); 46 updateHeight(root); 47 if(abs(getHeight(root->lchild) - getHeight(root->rchild)) == 2){ 48 if(getHeight(root->lchild->lchild) > getHeight(root->lchild->rchild)){ 49 R(root); 50 }else{ 51 L(root->lchild); 52 R(root); 53 } 54 } 55 }else{ 56 insert(root->rchild, key); 57 updateHeight(root); 58 if(abs(getHeight(root->lchild) - getHeight(root->rchild)) == 2){ 59 if(getHeight(root->rchild->rchild) > getHeight(root->rchild->lchild)){ 60 L(root); 61 }else{ 62 R(root->rchild); 63 L(root); 64 } 65 } 66 } 67 } 68 int main(){ 69 int N, key; 70 scanf("%d", &N); 71 node* root = NULL; 72 for(int i = 0; i < N; i++){ 73 scanf("%d", &key); 74 insert(root, key); 75 } 76 printf("%d", root->key); 77 cin >> N; 78 return 0; 79 }
总结:
1、题意:按照题目给出的key的顺序,建立一个平衡二叉搜索树。
2、二叉搜索树的几个关键地方:
- 每个节点使用height来记录自己的高度,叶节点高度为1;
- 获得某个节点高度的函数,主要是由于在获取平衡因子时,有些树的子树是空的,需要返回0,为避免访问空指针,获取节点高度都要通过该函数而非height字段。
- 更新当前节点的高度,应更新为左右子树的最大高度+1。
- 左旋与右旋:一定是三步操作而不是两步(不要忘记新的root的原子树)
- 插入与建树:插入操作基于二叉搜索树的插入。在root = NULL时进行新建节点并插入,在此处可以获得插入节点的信息。而在递归插入语句处,可以获取插入A节点之后距离A节点最近的父节点。因此在插入操作结束后就要对该节点进行更新高度,并在此处更新完之后检查平衡因子,并做LL、LR、RR、RL旋转。
3、调试的时候,可以取很少的几个节点,然后画出调试过程中树的形状。