caffe Solve函数

Posted Exploring...

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了caffe Solve函数相关的知识,希望对你有一定的参考价值。

下面来看Solver<Dtype>::Solve(const char* resume_file)

solver.cpp

template <typename Dtype>
void Solver<Dtype>::Solve(const char* resume_file) {
  CHECK(Caffe::root_solver());
  LOG(INFO) << "Solving " << net_->name();
  LOG(INFO) << "Learning Rate Policy: " << param_.lr_policy();

  // Initialize to false every time we start solving.
  requested_early_exit_ = false;

  if (resume_file) {
    LOG(INFO) << "Restoring previous solver status from " << resume_file;
    // 从以前中断的训练状态中恢复训练
    Restore(resume_file);
  }

  // For a network that is trained by the solver, no bottom or top vecs
  // should be given, and we will just provide dummy vecs.
  int start_iter = iter_;
  // 主要的迭代过程都在这里
  Step(param_.max_iter() - iter_);
  // If we haven\'t already, save a snapshot after optimization, unless
  // overridden by setting snapshot_after_train := false
  if (param_.snapshot_after_train()
      && (!param_.snapshot() || iter_ % param_.snapshot() != 0)) {
    Snapshot();
  }
  if (requested_early_exit_) {
    LOG(INFO) << "Optimization stopped early.";
    return;
  }
  // After the optimization is done, run an additional train and test pass to
  // display the train and test loss/outputs if appropriate (based on the
  // display and test_interval settings, respectively).  Unlike in the rest of
  // training, for the train net we only run a forward pass as we\'ve already
  // updated the parameters "max_iter" times -- this final pass is only done to
  // display the loss, which is computed in the forward pass.
  if (param_.display() && iter_ % param_.display() == 0) {
    int average_loss = this->param_.average_loss();
    Dtype loss;
    net_->Forward(&loss);

    UpdateSmoothedLoss(loss, start_iter, average_loss);

    LOG(INFO) << "Iteration " << iter_ << ", loss = " << smoothed_loss_;
  }
  if (param_.test_interval() && iter_ % param_.test_interval() == 0) {
    TestAll();
  }
  LOG(INFO) << "Optimization Done.";
}

下面先看Solve中的Restore(resume_file)

solver.cpp

template <typename Dtype>
void Solver<Dtype>::Restore(const char* state_file) {
  string state_filename(state_file);
  if (state_filename.size() >= 3 &&
      state_filename.compare(state_filename.size() - 3, 3, ".h5") == 0) {
    RestoreSolverStateFromHDF5(state_filename);
  } else {
    RestoreSolverStateFromBinaryProto(state_filename);
  }
}

上面的RestoreSolverStateFromHDF5(state_filename)和RestoreSolverStateFromBinaryProto(state_filename)都是虚函数,调用的其实是其派生类的同名方法。例如,若使用SGD求解,SGDSolver类中的RestoreSolverStateFromBinaryProto方法如下

sgd_solver.cpp

template <typename Dtype>
void SGDSolver<Dtype>::RestoreSolverStateFromBinaryProto(
    const string& state_file) {
  SolverState state;
  ReadProtoFromBinaryFile(state_file, &state);
  // 此处获取上次训练中断时的迭代次数
  this->iter_ = state.iter();
  if (state.has_learned_net()) {
    NetParameter net_param;
    ReadNetParamsFromBinaryFileOrDie(state.learned_net().c_str(), &net_param);
    this->net_->CopyTrainedLayersFrom(net_param);
  }
  this->current_step_ = state.current_step();
  CHECK_EQ(state.history_size(), history_.size())
      << "Incorrect length of history blobs.";
  LOG(INFO) << "SGDSolver: restoring history";
  for (int i = 0; i < history_.size(); ++i) {
    history_[i]->FromProto(state.history(i));
  }
}

下面主要分析Solve中的Step(param_.max_iter() - iter_)

solver.cpp

template <typename Dtype>
void Solver<Dtype>::Step(int iters) {
  const int start_iter = iter_;
  const int stop_iter = iter_ + iters;
  int average_loss = this->param_.average_loss();
  losses_.clear();
  smoothed_loss_ = 0;
  iteration_timer_.Start();

  while (iter_ < stop_iter) {
    // zero-init the params
    // 将网络中参数的梯度清零
    net_->ClearParamDiffs();
    if (param_.test_interval() && iter_ % param_.test_interval() == 0
        && (iter_ > 0 || param_.test_initialization())) {
      if (Caffe::root_solver()) {
        TestAll();
      }
      if (requested_early_exit_) {
        // Break out of the while loop because stop was requested while testing.
        break;
      }
    }

    for (int i = 0; i < callbacks_.size(); ++i) {
      callbacks_[i]->on_start();
    }
    const bool display = param_.display() && iter_ % param_.display() == 0;
    net_->set_debug_info(display && param_.debug_info());
    // accumulate the loss and gradient
    Dtype loss = 0;
    // param.iter_size_默认是1,正常情况下,此处其实只进行了以次前向和反向传播
    for (int i = 0; i < param_.iter_size(); ++i) {
      loss += net_->ForwardBackward();
    }
    loss /= param_.iter_size();
    // average the loss across iterations for smoothed reporting
    UpdateSmoothedLoss(loss, start_iter, average_loss);
    if (display) {
      float lapse = iteration_timer_.Seconds();
      float per_s = (iter_ - iterations_last_) / (lapse ? lapse : 1);
      LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << iter_
          << " (" << per_s << " iter/s, " << lapse << "s/"
          << param_.display() << " iters), loss = " << smoothed_loss_;
      iteration_timer_.Start();
      iterations_last_ = iter_;
      const vector<Blob<Dtype>*>& result = net_->output_blobs();
      int score_index = 0;
      for (int j = 0; j < result.size(); ++j) {
        const Dtype* result_vec = result[j]->cpu_data();
        const string& output_name =
            net_->blob_names()[net_->output_blob_indices()[j]];
        const Dtype loss_weight =
            net_->blob_loss_weights()[net_->output_blob_indices()[j]];
        for (int k = 0; k < result[j]->count(); ++k) {
          ostringstream loss_msg_stream;
          if (loss_weight) {
            loss_msg_stream << " (* " << loss_weight
                            << " = " << loss_weight * result_vec[k] << " loss)";
          }
          LOG_IF(INFO, Caffe::root_solver()) << "    Train net output #"
              << score_index++ << ": " << output_name << " = "
              << result_vec[k] << loss_msg_stream.str();
        }
      }
    }
    for (int i = 0; i < callbacks_.size(); ++i) {
      callbacks_[i]->on_gradients_ready();
    }
    // 网络的参数在此处更新。该函数是一个虚函数,具体由Solver的派生类来实现
    ApplyUpdate();

    // Increment the internal iter_ counter -- its value should always indicate
    // the number of times the weights have been updated.
    // 每次迭代其实是一个batch_size个样本输入网络中,将它们产生的网络参数的梯度加起来作为一次迭代的参数梯度。然后用这个梯度跟据一定的正则化方法、参数更新策略来更新参数
    ++iter_;

    SolverAction::Enum request = GetRequestedAction();

    // Save a snapshot if needed.
    if ((param_.snapshot()
         && iter_ % param_.snapshot() == 0
         && Caffe::root_solver()) ||
         (request == SolverAction::SNAPSHOT)) {
      Snapshot();
    }
    if (SolverAction::STOP == request) {
      requested_early_exit_ = true;
      // Break out of training loop.
      break;
    }
  }
}

上面的loss += net_->ForwardBackward()是训练过程的核心。这行代码的功能是取一个batch_size数据,让其在网络中进行一次前向传播,得出损失的均值;再进行一次反向传播,得出网络参数的梯度(该梯度是一个batch_size数据产生的梯度的均值)。详细分析见下一章节

以上是关于caffe Solve函数的主要内容,如果未能解决你的问题,请参考以下文章

Caffe源码-Solver类

caffe的python接口学习训练模型training

python Caffe片段

关于matlab solve函数的用法

pycaffe使用.solverstate文件继续训练

MATLAB中solve函数的问题