●洛谷P3688 [ZJOI2017]树状数组

Posted *ZJ

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了●洛谷P3688 [ZJOI2017]树状数组相关的知识,希望对你有一定的参考价值。

题链:

https://www.luogu.org/problemnew/show/P3688
题解:

二维线段树。

先不看询问时l=1的特殊情况。


对于一个询问(l,r),如果要让错误的程序得到正确答案,
显然应该满足l-1位置的值=r位置的值(或者说两个位置的异或值为0)。
那么定义二元组函数f(x,y)表示x位置与y位置的异或值为0的概率
如果可以维护出所有这样的二元组的函数值,
对于一个询问的话,就可以很方便的回答了。
现在看看,怎样维护这样的二元组的函数值。
假设现在给出了一个操作1:(L,R),(令prob=1/len)
那么显然,对于如下这些二元组:(0~L-1,L~R)和(L~R,R+1~N),
它们的函数值都会乘上(1-prob),因为有(1-prob)的概率无法使得其异或值改变。
再对于这些二元组(L~R,L~R),它们的函数值都会乘上(1-2*prob)。
把上面的二元组看出平面上的点,那么每个操作1就对应着改变平面上若干个矩形的值。
所以就直接使用二维线段树(树套树)去维护二维区间修改+单点查询

至于询问中l=1的情况,如果要让错误程序得到正确答案,那么[1~r-1]这一段的异或和就应该等于[r+1~N]这一段的异或和。
这里有这么一种做法:
记录到当前询问位置,之前有了cnt个1操作。
然后二维线段树查询f(0,r)的得到prob,
由于0位置不可能被随机到1操作,
所以prob就表示r位置被之前的所有1操作弄成0的概率,(即有偶数个1操作随机到了r位置的概率)。
如果cnt为偶数,那么一定[1~r-1]这一段和[r+1~N]这一段被1操作随机到的奇偶性相同,
也就是说[1~r-1]这一段的异或和就应该等于[r+1~N]这一段的异或和,所以答案就是prob.

反之,如果cnt为奇数,(1-prob)表示r位置被之前的所有1操作弄成1的概率,(即有奇数个1操作随机到了r位置的概率)。
这样的话那么也一定[1~r-1]这一段和[r+1~N]这一段被1操作随机到的奇偶性相同,
也就是说[1~r-1]这一段的异或和就应该等于[r+1~N]这一段的异或和,所以答案就是(1-prob).


代码:

 

#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
const int MOD=998244353;
int N,M,cnt;
int merge(int p1,int p2){
	return (1ll*p1*p2+1ll*(1-p1+MOD)*(1-p2+MOD))%MOD;
}
struct SGT2{
	int size;
	int ls[MAXN*200],rs[MAXN*200],p[MAXN*200];
	void Modify(int &u,int l,int r,int yl,int yr,int prob){
		if(!u) u=++size,p[u]=1;
		if(yl<=l&&r<=yr) return (void)(p[u]=merge(p[u],prob));
		int mid=(l+r)>>1;
		if(yl<=mid) Modify(ls[u],l,mid,yl,yr,prob);
		if(mid<yr) Modify(rs[u],mid+1,r,yl,yr,prob);
	}
	int Query(int u,int l,int r,int py){
		if(!u) return 1;
		int ret=merge(1,p[u]);
		if(l==r) return ret;
		int mid=(l+r)>>1;
		if(py<=mid) ret=merge(ret,Query(ls[u],l,mid,py));
		else ret=merge(ret,Query(rs[u],mid+1,r,py));
		return ret;
	}
}DTy;
struct SGT1{
	int size,root;
	int ls[MAXN*2],rs[MAXN*2],yroot[MAXN*2];
	void Modify(int &u,int l,int r,int xl,int xr,int yl,int yr,int prob){
		if(!u) u=++size;
		if(xl<=l&&r<=xr) return DTy.Modify(yroot[u],0,N+1,yl,yr,prob);
		int mid=(l+r)>>1;
		if(xl<=mid) Modify(ls[u],l,mid,xl,xr,yl,yr,prob);
		if(mid<xr) Modify(rs[u],mid+1,r,xl,xr,yl,yr,prob);
	}
	int Query(int u,int l,int r,int px,int py){
		if(!u) return 1;
		int ret=merge(1,DTy.Query(yroot[u],0,N+1,py));
		if(l==r) return ret;
		int mid=(l+r)>>1;
		if(px<=mid) ret=merge(ret,Query(ls[u],l,mid,px,py));
		else ret=merge(ret,Query(rs[u],mid+1,r,px,py));
		return ret;
	}
}DTx;
int fastpow(int a,int b){
	int ret=1;
	for(;b;a=1ll*a*a%MOD,b>>=1)
		if(b&1) ret=1ll*ret*a%MOD;
	return ret;
}
int main(){
	//cout<<fastpow(3,MOD-2)<<endl;
	scanf("%d%d",&N,&M);
	int t,l,r,prob,ans;
	for(int i=1;i<=M;i++){
		scanf("%d%d%d",&t,&l,&r);
		if(t==1){
			cnt++;
			prob=fastpow(r-l+1,MOD-2);
			DTx.Modify(DTx.root,0,N+1,0,l-1,l,r,(1ll-prob+MOD)%MOD);
			DTx.Modify(DTx.root,0,N+1,l,r,r+1,N+1,(1ll-prob+MOD)%MOD);
			if(r-l+1>=2) DTx.Modify(DTx.root,0,N+1,l,r,l,r,(1ll-2ll*prob+2ll*MOD)%MOD);
		}
		else{
			l--;
			ans=DTx.Query(DTx.root,0,N+1,l,r);
			if(l==0){
				if((cnt&1)==0) printf("%d\n",ans);
				else printf("%d\n",(1-ans+MOD)%MOD);
			}
			else printf("%d\n",ans);
		}
	}
	return 0;
}

 

  

 

以上是关于●洛谷P3688 [ZJOI2017]树状数组的主要内容,如果未能解决你的问题,请参考以下文章

[BZOJ4785][ZJOI2017]树状数组(概率+二维线段树)

Zjoi2017树状数组

ZJOI2017树状数组

ZJOI2017 树状数组

BZOJ4785[Zjoi2017]树状数组 树套树(二维线段树)

bzoj4785Zjoi2017树状数组