参考:https://www.cnblogs.com/neighthorn/p/6705785.html
并不是黑白染色而是三色染色(还有四色的,不过是一个意思
仔细观察一下不合法情况,可以发现都是特殊边两边有格子并且两个黑格子都在的时候黄蓝不能同在,所以(黄---黑)(黑---蓝)(黑---黑)都是最大权闭合子图中的依赖边
直接按照模型建就行,把黄蓝当成黑白染色。
……但是为什么不能用struct代替map呢QAQ
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
const int N=100005,mv[2][3][2]={-1,0,1,0,0,1,-1,0,1,0,0,-1},inf=1e9;
int c,r,n,s,t,le[N],h[N],cnt=1;
vector<int>v[N];
// struct que
// {
// int x,y;
// que(int X=0,int Y=0)
// {
// x=X,y=Y;
// }
// bool operator < (const que &a) const
// {
// return x>a.x;
// }
// };
// map<que,que>mp;
map< pair<int,int>,pair<int,int> > mp;
struct qwe
{
int ne,to,va;
}e[N*20];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>\'9\'||p<\'0\')
{
if(p==\'-\')
f=-1;
p=getchar();
}
while(p>=\'0\'&&p<=\'9\')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w);
add(v,u,0);
}
int bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(!f||u==t)
return f;
int us=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
int main()
{
c=read(),r=read(),n=read();
s=0,t=n+1;
for(int i=1;i<=n;i++)
{
int y=read(),x=read(),w=read();
// mp[que(x,y)]=que(i,w);
// v[x].push_back(y);
mp[make_pair(x,y)]=make_pair(i,w);
v[x].push_back(y);
}
for(int i=1;i<=r;i++)
sort(v[i].begin(),v[i].end());
for(int i=1;i<=r;i++)
for(int j=0;j<v[i].size();j++)
{
int x=i,y=v[i][j];
// if((x&1)&&y%4==1)
// {
// if(j<v[i].size()-1&&v[i][j+1]==y+1)
// ins(mp[que(x,y)].x,mp[que(x,y+1)].x,min(mp[que(x,y)].y,mp[que(x,y+1)].y));
// }
// else if((x&1)&&y%4==2)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,inf);
// }
// else if((x&1)==0&&y%4==0)
// {
// if(j>0&&v[i][j-1]==y-1)
// ins(mp[que(x,y)].x,mp[que(x,y-1)].x,min(mp[que(x,y)].y,mp[que(x,y-1)].y));
// }
// else if((x&1)==0&&y%4==3)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,inf);
// }
// else if(((x+y)&1)&&(x&1))
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,inf);
// ins(s,mp[que(x,y)].x,mp[que(x,y)].y);
// }
// else if((x&1)&&((x+y)&1)==0)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,mp[que(x,y)].x,inf);
// ins(mp[que(x,y)].x,t,mp[que(x,y)].y);
// }
// else if(((x+y)&1)&&(x&1)==0)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,inf);
// ins(s,mp[que(x,y)].x,mp[que(x,y)].y);
// }
// else
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,mp[que(x,y)].x,inf);
// ins(mp[que(x,y)].x,t,mp[que(x,y)].y);
// }
if((x&1)&&y%4==1)
{
if(j<v[i].size()-1&&v[i][j+1]==y+1)
ins(mp[make_pair(x,y)].first,mp[make_pair(x,y+1)].first,min(mp[make_pair(x,y)].second,mp[make_pair(x,y+1)].second));
}
else if((x&1)&&y%4==2)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,inf);
}
else if((x&1)==0&&y%4==0)
{
if(j>0&&v[i][j-1]==y-1)
ins(mp[make_pair(x,y)].first,mp[make_pair(x,y-1)].first,min(mp[make_pair(x,y)].second,mp[make_pair(x,y-1)].second));
}
else if((x&1)==0&&y%4==3)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,inf);
}
else if(((x+y)&1)&&(x&1))
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,inf);
ins(s,mp[make_pair(x,y)].first,mp[make_pair(x,y)].second);
}
else if((x&1)&&((x+y)&1)==0)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,mp[make_pair(x,y)].first,inf);
ins(mp[make_pair(x,y)].first,t,mp[make_pair(x,y)].second);
}
else if(((x+y)&1)&&(x&1)==0)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,inf);
ins(s,mp[make_pair(x,y)].first,mp[make_pair(x,y)].second);
}
else
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,mp[make_pair(x,y)].first,inf);
ins(mp[make_pair(x,y)].first,t,mp[make_pair(x,y)].second);
}
}
printf("%d\\n",dinic());
return 0;
}