题目描述
输入
输出
样例输入
5 8
1 2
1 3
1 4
2 3
2 4
3 5
5 4
2 5
样例输出
4.1111111111
题解
期望dp+堆优化Dijkstra
设 $f[i]$ 表示 $i$ 到终点的期望步数,那么有:$f[n]=0\ ,\ f[x]=\frac{\sum\limits_{(x,y)}\text{min}(f[x],f[y])+1}{d[x]}$ ,其中 $d[x]$ 表示 $x$ 的度数。
套路:对于这种 “初始只有一个点的dp值确定、其它点的dp值与其相邻的点有关” 的图上dp,考虑使用类似最短路的方式转移。
初始的时候除了 $n$ 以外,每个点的 $\text{min}(f[x],f[y])$ 都取 $f[x]$ ,dp值为 $+\infty$ 。
然后从 $n$ 号点开始最短路转移:对于当前的点 $i$ ,如果某个相邻的 $j$ 有 $f[j]>f[i]$ ,则对于 $f[j]$ 的计算来说,$\text{min}(f[j],f[i])$ 取 $f[i]$ 更优。此时更新 $j$ 的dp值,并将 $j$ 加入到待用于更新其它点的集合中。
注意到:如果使用 $f[i]$ 将 $f[j]$ 更新为 $f‘[j]$ ,那么显然有 $f[i]\le f‘[j]\le f[j]$ (等号在 $f[i]=f[j]$ 时取到),满足堆优化Dijkstra的贪心策略(当前最小的一定不会再被更新到更小),因此可以使用dp值小根堆来维护待用于更新其它点的集合,使用类似堆优化Dijkstra的方式转移即可。
最终的答案就是 $f[1]$ 。
时间复杂度 $O(m\log n)$
#include <queue> #include <cstdio> #include <algorithm> #define N 300010 using namespace std; typedef pair<double , int> pr; priority_queue<pr> q; double s[N] , f[N]; int head[N] , to[N << 1] , next[N << 1] , cnt , vis[N] , d[N] , c[N]; inline void add(int x , int y) { to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt; } int main() { int n , m , i , x , y; scanf("%d%d" , &n , &m); for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x) , d[x] ++ , d[y] ++ ; q.push(pr(0 , n)); while(!q.empty()) { x = q.top().second , q.pop(); if(vis[x]) continue; vis[x] = 1; for(i = head[x] ; i ; i = next[i]) if(!vis[to[i]]) c[to[i]] ++ , s[to[i]] += f[x] , f[to[i]] = (s[to[i]] + d[to[i]]) / c[to[i]] , q.push(pr(-f[to[i]] , to[i])); } printf("%lf\n" , f[1]); return 0; }