协同过滤用户相似度度量

Posted who_a

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了协同过滤用户相似度度量相关的知识,希望对你有一定的参考价值。

闵氏距离(Minkowski Distance)

当r=1时,曼哈顿距离(Manhatten)

当r=2时,欧氏距离(Euclidean)

r=无穷大,上确界距离(Supermum Distance)

皮尔逊相关系数(Pearson CORRELATION Coeffcient),取值[-1,1],1表示完全相关,-1表示完全不相关

近似计算公式

余弦相似度计算,取值[-1,1],1表示完全相似,-1表示完全不相似

 

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, "Norah Jones": 4.5, "Phoenix": 5.0, "Slightly Stoopid": 1.5, "The Strokes": 2.5, "Vampire Weekend": 2.0},
         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5, "Deadmau5": 4.0, "Phoenix": 2.0, "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0, "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5, "Slightly Stoopid": 1.0},
         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0, "Deadmau5": 4.5, "Phoenix": 3.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 2.0},
         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0, "Norah Jones": 4.0, "The Strokes": 4.0, "Vampire Weekend": 1.0},
         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, "Phoenix": 5.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 4.0},
         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0, "Norah Jones": 3.0, "Phoenix": 5.0, "Slightly Stoopid": 4.0, "The Strokes": 5.0},
         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0, "Slightly Stoopid": 2.5, "The Strokes": 3.0}
        }#{用户:{作品:评分}}
def manhattan(rating1, rating2):#计算曼哈顿距离
    """Computes the Manhattan distance. Both rating1 and rating2 are dictionaries
       of the form {\'The Strokes\': 3.0, \'Slightly Stoopid\': 2.5}"""
    distance = 0
    commonRatings = False 
    for key in rating1:
        if key in rating2:
            distance += abs(rating1[key] - rating2[key])
            commonRatings = True
    if commonRatings:
        return distance
    else:
        return -1
def pearson(rating1, rating2):#计算Pearson相关系数
    sum_xy = 0
    sum_x = 0
    sum_y = 0
    sum_x2 = 0
    sum_y2 = 0
    n = 0
    for key in rating1:
        if key in rating2:
            n += 1
            x = rating1[key]
            y = rating2[key]
            sum_xy += x * y
            sum_x += x
            sum_y += y
            sum_x2 += pow(x, 2)
            sum_y2 += pow(y, 2)
    # now compute denominator
    denominator = sqrt(sum_x2 - pow(sum_x, 2) / n) * sqrt(sum_y2 - pow(sum_y, 2) / n)
    if denominator == 0:
        return 0
    else:
        return (sum_xy - (sum_x * sum_y) / n)/denominator

 

相似度的选择:

当不同用户对不同商品评价标准的范围不一样时,使用皮尔逊相关系数;

当数据稠密,且属性值大小十分重要,使用欧氏或者曼哈顿距离;

当数据稀疏,存在很多零值,考虑余弦相似度。

来自《A Programmer\'s Guide To Data Mining》

以上是关于协同过滤用户相似度度量的主要内容,如果未能解决你的问题,请参考以下文章

推荐系统(一):基于物品的协同过滤算法

基于用户的协同过滤算法:用户相似度计算的改进

基于用户的协同过滤算法:用户相似度计算的改进

基于用户的协同过滤算法:用户相似度计算的改进

余弦计算相似度理解以及计算

大数据学习笔记:距离度量和相似度度量