贪心算法-图的最短路径算法Dijkstra之证明

Posted ordi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了贪心算法-图的最短路径算法Dijkstra之证明相关的知识,希望对你有一定的参考价值。

一、问题:图的最短路径

  定义图G=(V,E),而且每条边上的权值非负,求顶点s 到图中任意一点的最短距离。图中任意两点之间的距离定义为:路径上所有边的权值的和。

二、算法:Dijkstra算法

   设S是探查的顶点的集合,对每个,我们存储一个距离d(u)

   初始S={s},d(s)=0

    While S != V

      选择一个顶点使得从S到v至少有一条边并且

      

      把v加入到S并且定义

    End

三、证明算法的正确性:

  只需证明,在算法执行中任意一点的集合S,对每个,路径是最短的s-u路径。

  用数学归纳法证明算法的正确性:

  1. |S|=1 时, S={s},d(s)=0 显然成立
  2. 假设|S|=k时,命题成立

   既对每个,路径Pu是最短的s-u路径

  3. |S|=k+1

   假设此时引入的顶点是v,令(u,v)是s-v路径上最后的一条边。

   现在我们证明是s-v的所有路径中最短的路径。

   s要到达v,必须首先离开S,然后到达y,最后y到达v

   该距离:

   而从Dijkstra算法知,

   又因为,图中所有边的权值非负,

   所以有:

      故而Pv是s-v的所有路径中最短的路径。

 

以上是关于贪心算法-图的最短路径算法Dijkstra之证明的主要内容,如果未能解决你的问题,请参考以下文章

贪心算法之最短路径(Dijkstra算法)

最短路径——dijkstra算法(Java)

最短路径问题-Dijkstra(基于图的ADT)

有向有权图的最短路径算法--Dijkstra算法

图的最短路径的Dijkstra算法及Floyd算法

python 实现dijkstra算法求解最短路径