[CodeForces 11D] A Simple Task - 状态压缩入门

Posted nishikino-curtis

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[CodeForces 11D] A Simple Task - 状态压缩入门相关的知识,希望对你有一定的参考价值。

状态压缩/Bitmask

在动态规划问题中,我们会遇到需要记录一个节点是否被占用/是否到达过的情况。而对于一个节点数有多个甚至十几个的问题,开一个巨型的[0/1]数组显然不现实。于是就引入了状态压缩,用一个整数的不同二进制位来表示该节点的状态。

Description

  • Given a simple graph, output the number of simple cycles in it. A simple cycle is a cycle with no repeated vertices or edges.

Input&Output

Input

  • The first line of input contains two integers n and m (1?≤?n?≤?19, 0?≤?m) – respectively the number of vertices and edges of the graph. Each of the subsequent m lines contains two integers a and b, (1?≤?a,?b?≤?n, a?≠?b) indicating that vertices a and b are connected by an undirected edge. There is no more than one edge connecting any pair of vertices.

Output

  • Output the number of cycles in the given graph.

Sample

Input

4 6
1 2
1 3
1 4
2 3
2 4
3 4

Output

7

Solution

  • 大意是求简单无向图的环数,暴搜遍历必然会TLE,重复环的处理也十分复杂。
  • 考虑状态压缩,用二进制位来表示当前状态是否经过了特定的点。为了减轻重复环的处理难度,我们约定只计算起点序小于当前节点的状态(在代码中会有解释)。若节点i与当前节点y之间有边,状态的转移有以下几种条件:
  1. 若当前状态的起点序大于当前节点 (k&-k>(1<<y)) ,不转移。
  2. 若当前状态经过了当前节点 (k&(1<<y)) ,判断起点是否就是当前节点,若是,意味着我们找到了环,更新答案。
  3. 若当前状态没有经过当前节点,则更新经过当前节点的状态 f[k|(1<<y)][y] ,由 f[k][i] 贡献。
  • 遍历以每个节点为起点的所有状态,我们可以得到一个ans。但需要注意的是,这种计算方式会将两点间连一条边的路径(为什么?)和一个环的双向都计算在内,输出时需要将答案减去边数再除以2.
    细节与边界处理
  • 由于二进制位需要从第0位开始,我们不妨在建图时同一将点的编号减1,方便计算。节点的遍历也要从0到n-1。
  • 初始状态下,以节点i为起点,只经过i的状态,f值为1。
  • 代码如下:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define maxn 20
    #define maxe 400
    using namespace std;
    typedef long long ll;
    struct edge{
    int to,nxt;
    }e[maxe];
    int n,m,x,y,edgenum,lnk[maxn];
    ll ans,f[1<<maxn][maxn];
    void add(int bgn,int end)//事实上,节点比较少,邻接矩阵也可以存下
    {
    edgenum++;
    e[edgenum].to=end;
    e[edgenum].nxt=lnk[bgn];
    lnk[bgn]=edgenum;
    }
    int main()
    {
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;++i)
    {
        scanf("%d%d",&x,&y);
        add(x-1,y-1);
        add(y-1,x-1);   
    }
    for(int i=0;i<n;++i)f[1<<i][i]=1;
    for(int k=0;k<(1<<n);++k){
        for(int i=0;i<n;++i){
            if(!f[k][i])continue;
            for(int p=lnk[i];p;p=e[p].nxt){
                int y=e[p].to;
                if((k&-k)>(1<<y))continue;//判断起点序
                if(k&(1<<y)){
                    if((k&-k)==(1<<y))//判断环
                        ans+=f[k][i];
                }
                else f[k|(1<<y)][y]+=f[k][i];
            }
        }
    }
    ans=(ans-m)/2;
    printf("%I64d",ans);
    return 0;
    }

以上是关于[CodeForces 11D] A Simple Task - 状态压缩入门的主要内容,如果未能解决你的问题,请参考以下文章

[CodeForces 11D] A Simple Task - 状态压缩入门

CF11D A Simple Task

题解 CF11D A Simple Task

CF 11D A Simple Task 题解

CF11D A Simple Task(状压DP)

CF11D A Simple Task 状压DP