转自http://blog.csdn.net/abraham_li/article/details/50058123
矩阵等价
- 定义:对同型矩阵A、B,存在可逆阵P和Q,使得B=PAQ
- 充要条件:A和B的秩相等
矩阵合同
- 定义:对同型方阵A、B,存在可逆阵P使得B=PTAP
矩阵相似
- 比等价严苛
- 定义:对同型方阵A、B,存在可逆阵P,使得B=P^(-1)AP
三者关系:
- 等价(只有秩相同)–>合同(秩和正负惯性指数相同)–>相似(秩,正负惯性指数,特征值均相同),矩阵亲密关系的一步步深化。
- 相似矩阵必为等价矩阵,但等价矩阵未必为相似矩阵
- PQ=E 的等价矩阵是相似矩阵
- 合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵
- 正惯性指数相同的等价矩阵是合同矩阵
- 合同矩阵未必是相似矩阵
- 相似矩阵未必合同
- 正交相似矩阵必为合同矩阵,正交合同矩阵必为相似矩阵
- 如果A与B都是n阶实对称矩阵,且有相同的特征根.则A与B既相似又合同