PSO:利用PSO算法优化二元函数,寻找最优个体适应度—Jason niu
Posted 一个处女座的IT
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PSO:利用PSO算法优化二元函数,寻找最优个体适应度—Jason niu相关的知识,希望对你有一定的参考价值。
figure [x,y] = meshgrid(-5:0.1:5,-5:0.1:5); z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20; mesh(x,y,z) hold on c1 = 1.49445; c2 = 1.49445; maxgen = 1000; sizepop = 100; Vmax = 1; Vmin = -1; popmax = 5; popmin = -5; for i = 1:sizepop pop(i,:) = 5*rands(1,2); V(i,:) = rands(1,2); fitness(i) = fun(pop(i,:)); end [bestfitness bestindex] = max(fitness); zbest = pop(bestindex,:); gbest = pop; fitnessgbest = fitness; fitnesszbest = bestfitness; for i = 1:maxgen for j = 1:sizepop V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:)); V(j,find(V(j,:)>Vmax)) = Vmax; V(j,find(V(j,:)<Vmin)) = Vmin; pop(j,:) = pop(j,:) + V(j,:); pop(j,find(pop(j,:)>popmax)) = popmax; pop(j,find(pop(j,:)<popmin)) = popmin; fitness(j) = fun(pop(j,:)); end for j = 1:sizepop if fitness(j) > fitnessgbest(j) gbest(j,:) = pop(j,:); fitnessgbest(j) = fitness(j); end if fitness(j) > fitnesszbest zbest = pop(j,:); fitnesszbest = fitness(j); end end yy(i) = fitnesszbest; end [fitnesszbest, zbest] plot3(zbest(1), zbest(2), fitnesszbest,\'ro\',\'linewidth\',1.5) title(\'粒子群算法:绘制的目标函数三维网格图,红圈为最优点—Jason niu\') figure plot(yy) title(\'PSO:利用粒子群算法实现对目标函数寻找最优个体适应度—Jason niu\',\'fontsize\',12); xlabel(\'进化代数\',\'fontsize\',12);ylabel(\'适应度\',\'fontsize\',12);
以上是关于PSO:利用PSO算法优化二元函数,寻找最优个体适应度—Jason niu的主要内容,如果未能解决你的问题,请参考以下文章