opencv:使用高斯混合模型(GMM)源码对视频进行背景差分法
Posted 迷途中的前进
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了opencv:使用高斯混合模型(GMM)源码对视频进行背景差分法相关的知识,希望对你有一定的参考价值。
非常感谢thefutureisour对opencv中c++版本的高斯混合模型的源代码完全注释 ,网上直接使用opencv源码编程的比较少,但是要想自己对高斯混合模型进行优化,或者要想在论文中对高斯混合模型有所创新,必须使用opencv源码来进行编程,而不仅仅是使用opencv的源码接口调用一下修改一下参数。自己废了些脑子提供给网友交流一把,
1、 my_background_segm.hpp
#include "opencv2/core/core.hpp"
#include <list>
#include "opencv2/video/background_segm.hpp" //找到你自己安装包中该文件的位置
namespace cv
{
class CV_EXPORTS_W my_BackgroundSubtractorMOG : public BackgroundSubtractor
{
public:
//! the default constructor
CV_WRAP my_BackgroundSubtractorMOG();
//! the full constructor that takes the length of the history, the number of gaussian mixtures, the background ratio parameter and the noise strength
CV_WRAP my_BackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma=0);
//! the destructor
virtual ~my_BackgroundSubtractorMOG();
//! the update operator
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=0);
//! re-initiaization method
virtual void initialize(Size frameSize, int frameType);
// virtual AlgorithmInfo* info() const;
protected:
//public:
Size frameSize;
int frameType;
Mat bgmodel;
int nframes;
int history;
int nmixtures;
double varThreshold;
double backgroundRatio;
double noiseSigma;
};
}
2、my_background_segm.cpp
#include "my_background_segm.hpp"
using namespace cv;
static const int defaultNMixtures = 5;//默认混合模型个数
static const int defaultHistory = 200;//默认历史帧数
static const double defaultBackgroundRatio = 0.7;//默认背景门限
static const double defaultVarThreshold = 2.5*2.5;//默认方差门限
static const double defaultNoiseSigma = 30*0.5;//默认噪声方差
static const double defaultInitialWeight = 0.05;//默认初始权值
//不带参数的构造函数,使用默认值
my_BackgroundSubtractorMOG::my_BackgroundSubtractorMOG()
{
frameSize = Size(0,0);
frameType = 0;
nframes = 0;
nmixtures = defaultNMixtures;
history = defaultHistory;
varThreshold = defaultVarThreshold;
backgroundRatio = defaultBackgroundRatio;
noiseSigma = defaultNoiseSigma;
}
//带参数的构造函数,使用参数传进来的值
my_BackgroundSubtractorMOG::my_BackgroundSubtractorMOG(int _history, int _nmixtures,
double _backgroundRatio,
double _noiseSigma)
{
frameSize = Size(0,0);
frameType = 0;
nframes = 0;
nmixtures = min(_nmixtures > 0 ? _nmixtures : defaultNMixtures, 8);//不能超过8个,否则就用默认的
history = _history > 0 ? _history : defaultHistory;//不能小于0,否则就用默认的
varThreshold = defaultVarThreshold;//门限使用默认的
backgroundRatio = min(_backgroundRatio > 0 ? _backgroundRatio : 0.95, 1.);//背景门限必须大于0,小于1,否则使用0.95
noiseSigma = _noiseSigma <= 0 ? defaultNoiseSigma : _noiseSigma;//噪声门限大于0
}
my_BackgroundSubtractorMOG::~my_BackgroundSubtractorMOG()
{
}
void my_BackgroundSubtractorMOG::initialize(Size _frameSize, int _frameType)
{
frameSize = _frameSize;
frameType = _frameType;
nframes = 0;
int nchannels = CV_MAT_CN(frameType);
CV_Assert( CV_MAT_DEPTH(frameType) == CV_8U );
// for each gaussian mixture of each pixel bg model we store ...
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
// the mean (nchannels values) and
// the diagonal covariance matrix (another nchannels values)
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + 2*nchannels), CV_32F );//初始化一个1行*XX列的矩阵
//XX是这样计算的:图像的行*列*混合模型的个数*(1(优先级) + 1(权值) + 2(均值 + 方差) * 通道数)
bgmodel = Scalar::all(0);//清零
}
//设为模版,就是考虑到了彩色图像与灰度图像两种情况
template<typename VT> struct MixData
{
float sortKey;
float weight;
VT mean;
VT var;
};
static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
Mat& bgmodel, int nmixtures, double backgroundRatio,
double varThreshold, double noiseSigma )
{
int x, y, k, k1, rows = image.rows, cols = image.cols;
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold;//学习速率、背景门限、方差门限
int K = nmixtures;//混合模型个数
MixData<float>* mptr = (MixData<float>*)bgmodel.data;
const float w0 = (float)defaultInitialWeight;//初始权值
const float sk0 = (float)(w0/(defaultNoiseSigma*2));//初始优先级
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4);//初始方差
const float minVar = (float)(noiseSigma*noiseSigma);//最小方差
for( y = 0; y < rows; y++ )
{
const uchar* src = image.ptr<uchar>(y);
uchar* dst = fgmask.ptr<uchar>(y);
if( alpha > 0 )//如果学习速率为0,则退化为背景相减
{
for( x = 0; x < cols; x++, mptr += K )
{
float wsum = 0;
float pix = src[x];//每个像素
int kHit = -1, kForeground = -1;//是否属于模型,是否属于前景
for( k = 0; k < K; k++ )//每个高斯模型
{
float w = mptr[k].weight;//当前模型的权值
wsum += w;//权值累加
if( w < FLT_EPSILON )
break;
float mu = mptr[k].mean;//当前模型的均值
float var = mptr[k].var;//当前模型的方差
float diff = pix - mu;//当前像素与模型均值之差
float d2 = diff*diff;//平方
if( d2 < vT*var )//是否小于方门限,即是否属于该模型
{
wsum -= w;//如果匹配,则把它减去,因为之后会更新它
float dw = alpha*(1.f - w);
mptr[k].weight = w + dw;//增加权值
//注意源文章中涉及概率的部分多进行了简化,将概率变为1
mptr[k].mean = mu + alpha*diff;//修正均值
var = max(var + alpha*(d2 - var), minVar);//开始时方差清零0,所以这里使用噪声方差作为默认方差,否则使用上一次方差
mptr[k].var = var;//修正方差
mptr[k].sortKey = w/sqrt(var);//重新计算优先级,貌似这里不对,应该使用更新后的mptr[k].weight而不是w
for( k1 = k-1; k1 >= 0; k1-- )//从匹配的第k个模型开始向前比较,如果更新后的单高斯模型优先级超过他前面的那个,则交换顺序
{
if( mptr[k1].sortKey >= mptr[k1+1].sortKey )//如果优先级没有发生改变,则停止比较
break;
std::swap( mptr[k1], mptr[k1+1] );//交换它们的顺序,始终保证优先级最大的在前面
}
kHit = k1+1;//记录属于哪个模型
break;
}
}
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one
//当前像素不属于任何一个模型
{
//初始化一个新模型
kHit = k = min(k, K-1);//有两种情况,当最开始的初始化时,k并不是等于K-1的
wsum += w0 - mptr[k].weight;//从权值总和中减去原来的那个模型,并加上默认权值
mptr[k].weight = w0;//初始化权值
mptr[k].mean = pix;//初始化均值
mptr[k].var = var0; //初始化方差
mptr[k].sortKey = sk0;//初始化权值
}
else
for( ; k < K; k++ )
wsum += mptr[k].weight;//求出剩下的总权值
float wscale = 1.f/wsum;//归一化
wsum = 0;
for( k = 0; k < K; k++ )
{
wsum += mptr[k].weight *= wscale;
mptr[k].sortKey *= wscale;//计算归一化权值
if( wsum > T && kForeground < 0 )
kForeground = k+1;//第几个模型之后就判为前景了
}
dst[x] = (uchar)(-(kHit >= kForeground));//判决:(ucahr)(-true) = 255;(uchar)(-(false)) = 0;
}
}
else//如果学习速率小于等于0,则没有背景更新过程,其他过程类似
{
for( x = 0; x < cols; x++, mptr += K )
{
float pix = src[x];
int kHit = -1, kForeground = -1;
for( k = 0; k < K; k++ )
{
if( mptr[k].weight < FLT_EPSILON )
break;
float mu = mptr[k].mean;
float var = mptr[k].var;
float diff = pix - mu;
float d2 = diff*diff;
if( d2 < vT*var )
{
kHit = k;
break;
}
}
if( kHit >= 0 )
{
float wsum = 0;
for( k = 0; k < K; k++ )
{
wsum += mptr[k].weight;
if( wsum > T )
{
kForeground = k+1;
break;
}
}
}
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0);
}
}
}
}
static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
Mat& bgmodel, int nmixtures, double backgroundRatio,
double varThreshold, double noiseSigma )
{
int x, y, k, k1, rows = image.rows, cols = image.cols;
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold;
int K = nmixtures;
const float w0 = (float)defaultInitialWeight;
const float sk0 = (float)(w0/(defaultNoiseSigma*2*sqrt(3.)));
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4);
const float minVar = (float)(noiseSigma*noiseSigma);
MixData<Vec3f>* mptr = (MixData<Vec3f>*)bgmodel.data;
for( y = 0; y < rows; y++ )
{
const uchar* src = image.ptr<uchar>(y);
uchar* dst = fgmask.ptr<uchar>(y);
if( alpha > 0 )
{
for( x = 0; x < cols; x++, mptr += K )
{
float wsum = 0;
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]);
int kHit = -1, kForeground = -1;
for( k = 0; k < K; k++ )
{
float w = mptr[k].weight;
wsum += w;
if( w < FLT_EPSILON )
break;
Vec3f mu = mptr[k].mean;
Vec3f var = mptr[k].var;
Vec3f diff = pix - mu;
float d2 = diff.dot(diff);
if( d2 < vT*(var[0] + var[1] + var[2]) )
{
wsum -= w;
float dw = alpha*(1.f - w);
mptr[k].weight = w + dw;
mptr[k].mean = mu + alpha*diff;
var = Vec3f(max(var[0] + alpha*(diff[0]*diff[0] - var[0]), minVar),
max(var[1] + alpha*(diff[1]*diff[1] - var[1]), minVar),
max(var[2] + alpha*(diff[2]*diff[2] - var[2]), minVar));
mptr[k].var = var;
mptr[k].sortKey = w/sqrt(var[0] + var[1] + var[2]);
for( k1 = k-1; k1 >= 0; k1-- )
{
if( mptr[k1].sortKey >= mptr[k1+1].sortKey )
break;
std::swap( mptr[k1], mptr[k1+1] );
}
kHit = k1+1;
break;
}
}
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one
{
kHit = k = min(k, K-1);
wsum += w0 - mptr[k].weight;
mptr[k].weight = w0;
mptr[k].mean = pix;
mptr[k].var = Vec3f(var0, var0, var0);
mptr[k].sortKey = sk0;
}
else
for( ; k < K; k++ )
wsum += mptr[k].weight;
float wscale = 1.f/wsum;
wsum = 0;
for( k = 0; k < K; k++ )
{
wsum += mptr[k].weight *= wscale;
mptr[k].sortKey *= wscale;
if( wsum > T && kForeground < 0 )
kForeground = k+1;
}
dst[x] = (uchar)(-(kHit >= kForeground));
}
}
else
{
for( x = 0; x < cols; x++, mptr += K )
{
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]);
int kHit = -1, kForeground = -1;
for( k = 0; k < K; k++ )
{
if( mptr[k].weight < FLT_EPSILON )
break;
Vec3f mu = mptr[k].mean;
Vec3f var = mptr[k].var;
Vec3f diff = pix - mu;
float d2 = diff.dot(diff);
if( d2 < vT*(var[0] + var[1] + var[2]) )
{
kHit = k;
break;
}
}
if( kHit >= 0 )
{
float wsum = 0;
for( k = 0; k < K; k++ )
{
wsum += mptr[k].weight;
if( wsum > T )
{
kForeground = k+1;
break;
}
}
}
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0);
}
}
}
}
void my_BackgroundSubtractorMOG::operator()(InputArray _image, OutputArray _fgmask, double learningRate)
{
Mat image = _image.getMat();
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;//是否需要初始化
if( needToInitialize )
initialize(image.size(), image.type());//初始化
CV_Assert( image.depth() == CV_8U );
_fgmask.create( image.size(), CV_8U );
Mat fgmask = _fgmask.getMat();
++nframes;
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./min( nframes, history );
CV_Assert(learningRate >= 0);
if( image.type() == CV_8UC1 )//处理灰度图像
process8uC1( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma );
else if( image.type() == CV_8UC3 )//处理彩色图像
process8uC3( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma );
else
CV_Error( CV_StsUnsupportedFormat, "Only 1- and 3-channel 8-bit images are supported in my_BackgroundSubtractorMOG" );
}
//}
3、main.cpp
#include <iostream>
#include <string>
#include <opencv2/opencv.hpp>
#include "my_background_segm.hpp" //自己定义的头文件,默认的是直接调用opencv自带的GMM有关的函数,所以本文中重新定义一个不同的类
using namespace cv;
using namespace std;
int count_frame = 0;
int main()
{
VideoCapture capture("3.avi");
if( !capture.isOpened() )
{
cout<<"读取视频失败"<<endl;
return -1;
}
//获取整个帧数
long totalFrameNumber = capture.get(CV_CAP_PROP_FRAME_COUNT);
cout<<"整个视频共"<<totalFrameNumber<<"帧"<<endl;
//设置开始帧()
long frameToStart = 1;
capture.set( CV_CAP_PROP_POS_FRAMES,frameToStart);
cout<<"从第"<<frameToStart<<"帧开始读"<<endl;
//设置结束帧
int frameToStop = 650;
if(frameToStop < frameToStart)
{
cout<<"结束帧小于开始帧,程序错误,即将退出!"<<endl;
return -1;
}
else
{
cout<<"结束帧为:第"<<frameToStop<<"帧"<<endl;
}
double rate = capture.get(CV_CAP_PROP_FPS);
int delay = 1000/rate;
Mat frame;
//前景图片
Mat foreground;
Mat GMM_gray;
Mat GMM_canny;
//使用默认参数调用混合高斯模型
my_BackgroundSubtractorMOG mog; //使用自己定义的高斯混合模型类
bool stop(false);
//currentFrame是在循环体中控制读取到指定的帧后循环结束的变量
long currentFrame = frameToStart;
while( !stop )
{
count_frame ++ ;
if( !capture.read(frame) )
{
cout<<"从视频中读取图像失败或者读完整个视频"<<endl;
return -2;
}
cvtColor(frame,GMM_gray,CV_RGB2GRAY);
//Canny(GMM_gray,GMM_canny,50,150,3);
//imshow("GMM_canny",GMM_canny);
imshow("输入视频",frame);
//参数为:输入图像、输出图像、学习速率
//mog(GMM_canny,foreground,0.01);
mog(GMM_gray,foreground,0.01);
//cout<<mog.nframes<<" ";
imshow("前景",foreground);
medianBlur(foreground,foreground,3);
imshow("中值滤波后的前景",foreground);
//按ESC键退出,按其他键会停止在当前帧
int c = waitKey(delay);
if ( (char)c == 27 || currentFrame >= frameToStop)
{
stop = true;
}
if ( c >= 0)
{
waitKey(0);
}
currentFrame++;
}
waitKey(0);
}
据说还用一种是使用cmake对opencv源码进行操作,我没哟使用过,还据说cmake挺简单的,如果有使用的网友可以提出更好的方法哈
以上是关于opencv:使用高斯混合模型(GMM)源码对视频进行背景差分法的主要内容,如果未能解决你的问题,请参考以下文章