题目
Sol
二分+线段树
巧妙啊我怎么就没想到
二分答案,把数分类,大于等于\(mid\)的为\(1\),小于的为\(0\)
相当于给\(01\)序列排序,最后判断询问位置上是不是\(1\)
线段树+lazy覆盖
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 5);
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, m, q, a[_], ql[_], qr[_], qo[_];
int sum[_ << 2], cov[_ << 2];
IL void Build(RG int x, RG int l, RG int r, RG int v){
sum[x] = 0, cov[x] = -1;
if(l == r){
sum[x] = a[l] >= v;
return;
}
RG int mid = (l + r) >> 1, ls = x << 1, rs = x << 1 | 1;
Build(ls, l, mid, v), Build(rs, mid + 1, r, v);
sum[x] = sum[ls] + sum[rs];
}
IL void Pushdown(RG int x, RG int l, RG int mid, RG int r){
RG int ls = x << 1, rs = x << 1 | 1;
cov[ls] = cov[rs] = cov[x];
sum[ls] = (mid - l + 1) * cov[x];
sum[rs] = (r - mid) * cov[x];
cov[x] = -1;
}
IL void Modify(RG int x, RG int l, RG int r, RG int L, RG int R, RG int v){
if(L <= l && R >= r){
sum[x] = (r - l + 1) * v;
cov[x] = v;
return;
}
RG int mid = (l + r) >> 1, ls = x << 1, rs = x << 1 | 1;
if(cov[x] != -1) Pushdown(x, l, mid, r);
if(L <= mid) Modify(ls, l, mid, L, R, v);
if(R > mid) Modify(rs, mid + 1, r, L, R, v);
sum[x] = sum[ls] + sum[rs];
}
IL int Query(RG int x, RG int l, RG int r, RG int L, RG int R){
if(cov[x] != -1) return cov[x] * (R - L + 1);
if(L <= l && R >= r) return sum[x];
RG int mid = (l + r) >> 1;
if(R <= mid) return Query(x << 1, l, mid, L, R);
if(L > mid) return Query(x << 1 | 1, mid + 1, r, L, R);
return Query(x << 1, l, mid, L, mid) + Query(x << 1 | 1, mid + 1, r, mid + 1, R);
}
IL bool Check(RG int mid){
Build(1, 1, n, mid);
for(RG int i = 1; i <= m; ++i){
RG int cnt = Query(1, 1, n, ql[i], qr[i]);
if(!cnt || cnt == qr[i] - ql[i] + 1) continue;
if(qo[i]){
Modify(1, 1, n, ql[i], ql[i] + cnt - 1, 1);
Modify(1, 1, n, ql[i] + cnt, qr[i], 0);
}
else{
Modify(1, 1, n, ql[i], qr[i] - cnt, 0);
Modify(1, 1, n, qr[i] - cnt + 1, qr[i], 1);
}
}
return Query(1, 1, n, q, q);
}
int main(RG int argc, RG char* argv[]){
n = Input(), m = Input();
for(RG int i = 1; i <= n; ++i) a[i] = Input();
for(RG int i = 1; i <= m; ++i) qo[i] = Input(), ql[i] = Input(), qr[i] = Input();
q = Input();
RG int l = 1, r = n, ans = 0;
while(l <= r){
RG int mid = (l + r) >> 1;
if(Check(mid)) ans = mid, l = mid + 1;
else r = mid - 1;
}
printf("%d\n", ans);
return 0;
}