DP+最短路
可以先用 \(Dijkstra\) 将每一段时间内的费用都先预处理出来, \([i,j]\) 时间段的费用表示为 \(Cost(i,j)\) ,然后再设 \(dp[i]\) 为第 \(i\) 天时的最优解。状态转移的时候枚举第几天的时候改变了路线。
\[dp[i]=\min_{0≤j<i} \{dp[j]+Cost(j+1,i)*(i-j)+k\}\]
\[dp[0]=-k\]
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
const int max_n = 100 + 5;
const int max_m = 20 + 5;
const int max_e = max_m * max_m + 5;
const int inf = 0x3f3f3f3f;
int N, M, K, E, D, Tot;
int Dp[max_n], First_edge[max_m], P[max_m][max_n], Flag[max_m], Dis[max_m], C[max_n][max_n];
struct Edge
{
int to, w, next_edge;
}Linker[max_e << 1];
struct Heap
{
int cur;
Heap(int x)
{
cur = x;
}
bool operator < (const Heap &x) const
{
return Dis[cur] > Dis[x.cur];
}
};
std::priority_queue <Heap> Q;
inline int read()
{
register int x = 0;
register char ch = getchar();
while(!isdigit(ch)) ch = getchar();
while(isdigit(ch))
{
x = (x << 1) + (x << 3) + ch - ‘0‘;
ch = getchar();
}
return x;
}
inline void add_edge(int x, int y, int z)
{
Linker[++Tot].to = y;
Linker[Tot].w = z;
Linker[Tot].next_edge = First_edge[x];
First_edge[x] = Tot;
}
int Dijkstra()
{
int from, to, w;
memset(Dis, inf, sizeof(Dis));
Dis[1] = 0;
Q.push(Heap(1));
while(!Q.empty())
{
from = Q.top().cur;
Q.pop();
for(int k = First_edge[from]; k; k = Linker[k].next_edge)
{
to = Linker[k].to;
w = Linker[k].w;
if(Dis[to] > Dis[from] + w && !Flag[to])
{
Dis[to] = Dis[from] + w;
Q.push(Heap(to));
}
}
}
return Dis[M];
}
int main()
{
int x, y, z;
N = read();
M = read();
K = read();
E = read();
for(int i = 1; i <= E; ++i)
{
x = read();
y = read();
z = read();
add_edge(x, y, z);
add_edge(y, x, z);
}
D = read();
for(int i = 1; i <= D; ++i)
{
x = read();
y = read();
z = read();
for(int j = y; j <= z; ++j)
P[x][j] = 1;
}
for(int i = 1; i <= N; ++i)
{
for(int j = i; j <= N; ++j)
{
memset(Flag, 0, sizeof(Flag));
for(int k = 1; k <= M; ++k)
for(int l = i; l <= j; ++l)
Flag[k] |= P[k][l];
C[i][j] = Dijkstra();
}
}
memset(Dp, inf, sizeof(Dp));
Dp[0]= -K;
for(int i = 1; i <= N; ++i)
for(int j = 0; j < i; ++j)
Dp[i] = std::min(Dp[i], (C[j + 1][i] == inf) ? inf : Dp[j] + C[j + 1][i] * (i - j) + K);
printf("%d\n", Dp[N]);
return 0;
}