Hadoop经典案例Spark实现——日志分析:分析非结构化文件
Posted kwu_ganymede
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop经典案例Spark实现——日志分析:分析非结构化文件相关的知识,希望对你有一定的参考价值。
相关文章推荐
Hadoop经典案例Spark实现(一)——通过采集的气象数据分析每年的最高温度
Hadoop经典案例Spark实现(二)——数据去重问题
Hadoop经典案例Spark实现(三)——数据排序
Hadoop经典案例Spark实现(四)——平均成绩
Hadoop经典案例Spark实现(五)——求最大最小值问题
Hadoop经典案例Spark实现(六)——求最大的K个值并排序
Hadoop经典案例Spark实现(七)——日志分析:分析非结构化文件
Hadoop经典案例Spark实现(七)——日志分析:分析非结构化文件
1、需求:根据tomcat日志计算url访问了情况,具体的url如下,
要求:区别统计GET和POST URL访问量
结果为:访问方式、URL、访问量
测试数据集:
196.168.2.1 - - [03/Jul/2014:23:36:38 +0800] "GET /course/detail/3.htm HTTP/1.0" 200 38435 0.038
182.131.89.195 - - [03/Jul/2014:23:37:43 +0800] "GET /html/notes/20140617/888.html HTTP/1.0" 301 - 0.000
196.168.2.1 - - [03/Jul/2014:23:38:27 +0800] "POST /service/notes/addViewTimes_23.htm HTTP/1.0" 200 2 0.003
196.168.2.1 - - [03/Jul/2014:23:39:03 +0800] "GET /html/notes/20140617/779.html HTTP/1.0" 200 69539 0.046
196.168.2.1 - - [03/Jul/2014:23:43:00 +0800] "GET /html/notes/20140318/24.html HTTP/1.0" 200 67171 0.049
196.168.2.1 - - [03/Jul/2014:23:43:59 +0800] "POST /service/notes/addViewTimes_779.htm HTTP/1.0" 200 1 0.003
196.168.2.1 - - [03/Jul/2014:23:45:51 +0800] "GET /html/notes/20140617/888.html HTTP/1.0" 200 70044 0.060
196.168.2.1 - - [03/Jul/2014:23:46:17 +0800] "GET /course/list/73.htm HTTP/1.0" 200 12125 0.010
196.168.2.1 - - [03/Jul/2014:23:46:58 +0800] "GET /html/notes/20140609/542.html HTTP/1.0" 200 94971 0.077
196.168.2.1 - - [03/Jul/2014:23:48:31 +0800] "POST /service/notes/addViewTimes_24.htm HTTP/1.0" 200 2 0.003
196.168.2.1 - - [03/Jul/2014:23:48:34 +0800] "POST /service/notes/addViewTimes_542.htm HTTP/1.0" 200 2 0.003
196.168.2.1 - - [03/Jul/2014:23:49:31 +0800] "GET /notes/index-top-3.htm HTTP/1.0" 200 53494 0.041
196.168.2.1 - - [03/Jul/2014:23:50:55 +0800] "GET /html/notes/20140609/544.html HTTP/1.0" 200 183694 0.076
196.168.2.1 - - [03/Jul/2014:23:53:32 +0800] "POST /service/notes/addViewTimes_544.htm HTTP/1.0" 200 2 0.004
196.168.2.1 - - [03/Jul/2014:23:54:53 +0800] "GET /service/notes/addViewTimes_900.htm HTTP/1.0" 200 151770 0.054
196.168.2.1 - - [03/Jul/2014:23:57:42 +0800] "GET /html/notes/20140620/872.html HTTP/1.0" 200 52373 0.034
196.168.2.1 - - [03/Jul/2014:23:58:17 +0800] "POST /service/notes/addViewTimes_900.htm HTTP/1.0" 200 2 0.003
196.168.2.1 - - [03/Jul/2014:23:58:51 +0800] "GET /html/notes/20140617/888.html HTTP/1.0" 200 70044 0.057
186.76.76.76 - - [03/Jul/2014:23:48:34 +0800] "POST /service/notes/addViewTimes_542.htm HTTP/1.0" 200 2 0.003
186.76.76.76 - - [03/Jul/2014:23:46:17 +0800] "GET /course/list/73.htm HTTP/1.0" 200 12125 0.010
8.8.8.8 - - [03/Jul/2014:23:46:58 +0800] "GET /html/notes/20140609/542.html HTTP/1.0" 200 94971 0.077
由于Tomcat日志是不规则的,需要先过滤清洗数据。
2、Hadoop之MapReduce实现:
Map类
import java.io.IOException;
import javax.naming.spi.DirStateFactory.Result;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class LogMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private IntWritable val = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String line = value.toString().trim();
String tmp = handlerLog(line);
if(tmp.length()>0){
context.write(new Text(tmp), val);
}
}
//127.0.0.1 - - [03/Jul/2014:23:36:38 +0800] "GET /course/detail/3.htm HTTP/1.0" 200 38435 0.038
private String handlerLog(String line){
String result = "";
try{
if(line.length()>20){
if(line.indexOf("GET")>0){
result = line.substring(line.indexOf("GET"), line.indexOf("HTTP/1.0")).trim();
}else if(line.indexOf("POST")>0){
result = line.substring(line.indexOf("POST"), line.indexOf("HTTP/1.0")).trim();
}
}
}catch (Exception e) {
System.out.println(line);
}
return result;
}
public static void main(String[] args){
String line = "127.0.0.1 - - [03/Jul/2014:23:36:38 +0800] \\"GET /course/detail/3.htm HTTP/1.0\\" 200 38435 0.038";
System.out.println(new LogMapper().handlerLog(line));
}
}
Reduce类
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class LogReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values,Context context)
throws IOException, InterruptedException {
int sum = 0;
for(IntWritable val : values){
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
启动类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class JobMain {
/**
* @param args
*/
public static void main(String[] args)throws Exception {
Configuration configuration = new Configuration();
Job job = new Job(configuration,"log_job");
job.setJarByClass(JobMain.class);
job.setMapperClass(LogMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(LogReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
Path path = new Path(args[1]);
FileSystem fs = FileSystem.get(configuration);
if(fs.exists(path)){
fs.delete(path, true);
}
FileOutputFormat.setOutputPath(job, path);
System.exit(job.waitForCompletion(true)?0:1);
}
}
3、Spark实现之Scala版本
//textFile() 加载数据
val data = sc.textFile("/spark/seven.txt")
//filter 过滤长度小于0, 过滤不包含GET与POST的URL
val filtered = data.filter(_.length()>0).filter( line => (line.indexOf("GET")>0 || line.indexOf("POST")>0) )
//转换成键值对操作
val res = filtered.map( line => {
if(line.indexOf("GET")>0){ //截取 GET 到URL的字符串
(line.substring(line.indexOf("GET"),line.indexOf("HTTP/1.0")).trim,1)
}else{ //截取 POST 到URL的字符串
(line.substring(line.indexOf("POST"),line.indexOf("HTTP/1.0")).trim,1)
}//最后通过reduceByKey求sum
}).reduceByKey(_+_)
//触发action事件执行
res.collect()
Scala函数式编程的代码简洁且优雅,在JDK1.8之后的也会有类似的新特性。
对比输出结果与MR是一致的
(POST /service/notes/addViewTimes_779.htm,1),
(GET /service/notes/addViewTimes_900.htm,1),
(POST /service/notes/addViewTimes_900.htm,1),
(GET /notes/index-top-3.htm,1),
(GET /html/notes/20140318/24.html,1),
(GET /html/notes/20140609/544.html,1),
(POST /service/notes/addViewTimes_542.htm,2),
(POST /service/notes/addViewTimes_544.htm,1),
(GET /html/notes/20140609/542.html,2),
(POST /service/notes/addViewTimes_23.htm,1),
(GET /html/notes/20140617/888.html,3),
(POST /service/notes/addViewTimes_24.htm,1),
(GET /course/detail/3.htm,1),
(GET /course/list/73.htm,2),
(GET /html/notes/20140617/779.html,1),
(GET /html/notes/20140620/872.html,1)
以上是关于Hadoop经典案例Spark实现——日志分析:分析非结构化文件的主要内容,如果未能解决你的问题,请参考以下文章