内存管理总结-autoreleasePool
Posted shxwork
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了内存管理总结-autoreleasePool相关的知识,希望对你有一定的参考价值。
序言
无论是在MRC时期还是ARC时期,做过开发的程序员都接触过autoreleasepool。尽管接触过但本人对它还不是很了解。本文只是将自己的理解说出来。在内存管理的文章中提到了OC的内存管理是通过引用计数来完成的,也介绍了可以通过内存管理的方法(alloc/retain/new/copy等)来使引用计数加1,使用release方法来使引用计数减1。在我们创建了大量对象的时候,如果还是手动调用release方法来释放它们就显得太繁琐了。本文章将介绍内存管理的另外一种机制-autoreleasepool。
autoreleasepool概念
自动释放池是NSAutoreleasePool的实例,其中包含了收到autorelease消息的对象。当一个自动释放池自身被销毁(dealloc)时,它会给池中每一个对象发送一个release消息(如果你给一个对象多次发送autorelease消息,那么当自动释放池销毁时,这个对象也会收到同样数目的release消息)。可以看出,一个自动释放的对象,它至少能够存活到自动释放池销毁的时候。这样看来它是一种延迟释放机制,这样保证局部堆上的变量能够被外部正常使用。
这里说一下,在Xcode5以前是通过NSAutoreleasePool创建实例来实现的,代码如下:
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
// code
[pool drain];
但是在Xcode5以后,它的写法就简单了,代码如下:(所以本文的代码主要以这种写法来讲解)
@autoreleasepool {
// code
}
既然autoreleasepool也是一个对象,它在内存中以什么结构进行存储呢?它存储于内存中的栈中,遵循”先进后出”原则。
下面通过代码来简单的看一下autoreleasepool是如何进行内存管理的。
新建一个HXPerson类,重写其dealloc方法,代码如下:
- (void)dealloc {
NSLog(@"HXPerson dealloc");
[super dealloc];
}
无autoreleasepool情况:
int main(int argc, const char * argv[]) {
HXPerson *person = [[HXPerson alloc] init];
[person release];
return 0;
}
有autoreleasepool情况:
int main(int argc, const char * argv[]) {
@autoreleasepool {
// 根据上面介绍的,我们要在初始化的时候,调用autorelease方法
HXPerson *person = [[[HXPerson alloc] init] autorelease];
}
return 0;
}
可以看到,使用autoreleasepool的情况就算没有调用release方法,该person对象也被销毁了。但是在创建person对象的时候一定要调用autorelease方法。该方法主要的作用就是将person对象放在该autoreleasepool中,且person对象在该autoreleasepool没有销毁之前一直是有效的,也就是说该person对象可以被访问,直到该autoreleasepool被销毁。只要autoreleasepool被销毁,放在autoreleasepool里面的所有对象(调用过autorelease的对象)都会自动执行一次release方法来销毁对象。
autorelease作用:
- 对象执行autorelease方法时会将对象添加到自动释放池中
- 当自动释放池销毁时自动释放池中所有对象作release操作
- 对象执行autorelease方法后自身引用计数器不会改变,而且会返回对象本身
- autorelease实际上只是把对象release的调用延迟了,对于对象的autorelease系统只是把当前对象放入了当前对应的autorelease pool中,当该pool被释放时([pool drain]),该pool中的所有对象会被调用Release,从而释放使用的内存。这个可以说是autorelease的优点,因为无需我们再关注他的引用计数,直接交给系统来做!
- 对于操作占用内存比较大的对象的时候不要随便使用,担心对象释放的时间太迟,造成内存高峰, 但是操作占用内存比较小的对象可以使用
autoreleasepool创建
上篇文章中讲到runLoop的时候就提到autoreleasepool。 App启动后,系统在主线程runLoop里注册两个Observser,其回调都是_wrapRunLoopWithAutoreleasePoolHandler()。第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 创建自动释放池。其优先级最高,保证创建释放池发生在其他所有回调之前。第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 释放旧的池并创建新池;Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 优先级最低,保证其释放池子发生在其他所有回调之后。在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被runLoop创建好的AutoreleasePool环绕着,所以不会出现内存泄漏,开发者也不必显示创建Pool。可见开发过程中我们没有创建autoreleasepool,系统也会帮我们创建。这就解释了,为什么开发中没有创建autoreleasepool也没有内存泄露的原因了。关于runLoop
通过下面的例子,我们来看一下,runLoop创建的autoreleasepool是不是真的帮我们管理了内存。
__weak id reference = nil;
- (void)viewDidLoad {
[super viewDidLoad];
NSString *str = [NSString stringWithFormat:@"autoreleasePool"];
// str是一个autorelease对象,设置一个weak的引用来观察它
reference = str;
NSLog(@"%@", reference); // Console: autoreleasePool
}
- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];
NSLog(@"%@", reference); // Console: autoreleasePool
}
- (void)viewDidAppear:(BOOL)animated {
[super viewDidAppear:animated];
NSLog(@"%@", reference); // Console: (null)
}
这个实验同时也证明了viewDidLoad和viewWillAppear是在同一个runloop调用的,而viewDidAppear是在之后的某个runloop调用的。由于这个vc在loadView之后便add到了window层级上,所以viewDidLoad和viewWillAppear是在同一个runloop调用的,因此在viewWillAppear中,这个autorelease的变量依然有值。
当然,我们也可以不用等到当前runLoop结束,选择手动干预Autorelease对象的释放时机:
- (void)viewDidLoad {
[super viewDidLoad];
@autoreleasepool {
NSString *str = [NSString stringWithFormat:@"autoreleasePool"];
}
NSLog(@"%@", str); // Console: (null)
}
通过上面的例子,可以看出,没有调用release也做到了内存管理。可是大家注意到了,str对象没有调用autorelease方法啊,怎么被放到autoreleasepool进行管理的呢?其实静态方法已经在内部自动调用了autorelease方法,所有这里不需要再调用。
autoreleasepool作用
autoreleasepool实质
现在以ARC环境来分析其原理。runLoop创建的autoreleasepool实例我们就以@autoreleasepool形式呈现。新建项目之后,其中的main函数如下:
int main(int argc, char * argv[]) {
@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
在这个 @autoreleasepool{}中只包含了一行代码,这行代码将所有的事件、消息全部交给了 UIApplication 来处理,但是这不是本文关注的重点。
需要注意的是:整个ios的应用都是包含在一个自动释放池block中的。
继续我们的主题。我们知道autoreleasepool是一个自动释放池,那么它到底是一个什么样的数据结构呢?我们在命令行中使用 clang -rewrite-objc main.m
让编译器重新改写这个文件,编译完后,会在该文件目录下多一个.cpp文件。打开这个文件。滚到最底部。可以看到如下代码:(删除掉多余的代码)
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
}
return 0;
}
在这个文件中,有一个非常奇怪的
__AtAutoreleasePool
的结构体,前面的注释写到
/* @autoreleasepopl */
。也就是说
@autoreleasepool {}
被转换为:
{
__AtAutoreleasePool __autoreleasepool;
}
那么__AtAutoreleasePool又是什么?在文件中可以找到__AtAutoreleasePool数据结构如下:
struct __AtAutoreleasePool {
__AtAutoreleasePool() {atautoreleasepoolobj = objc_autoreleasePoolPush();}
~__AtAutoreleasePool() {objc_autoreleasePoolPop(atautoreleasepoolobj);}
void * atautoreleasepoolobj;
};
它是一个结构体,该结构体会在初始化时调用
objc_autoreleasePoolPush()
方法,会在析构时调用
objc_autoreleasePoolPop
方法。所以我们可以进一步将main函数中的代码改写为如下:
int main(int argc, const char * argv[]) {
{
void * atautoreleasepoolobj = objc_autoreleasePoolPush();
// do whatever you want
objc_autoreleasePoolPop(atautoreleasepoolobj);
}
return 0;
}
@autoreleasepool 只是帮助我们少写了这两行代码而已,让代码看起来更美观,然后要根据上述两个方法来分析自动释放池的实现。
objc_autoreleasePoolPush
和 objc_autoreleasePoolPop
的实现:
void *objc_autoreleasePoolPush(void) {
return AutoreleasePoolPage::push();
}
void objc_autoreleasePoolPop(void *ctxt) {
AutoreleasePoolPage::pop(ctxt);
}
__AtAutoreleasePool的Push和Pop方法看上去方法看上去是对
AutoreleasePoolPage
对应
静态方法
push
和
pop
的封装。
AutoreleasePoolPage
那么AutoreleasePoolPage
又是一个什么东东呢?,它的定义可以在NSObject.mm文件中看到,定义如下:
class AutoreleasePoolPage {
magic_t const magic;
id *next;
pthread_t const thread;
AutoreleasePoolPage * const parent;
AutoreleasePoolPage *child;
uint32_t const depth;
uint32_t hiwat;
};
magic
用于对当前AutoreleasePoolPage
完整性 的校验thread
保存了当前页所在的线程
每一个自动释放池都是由一系列的 AutoreleasePoolPage
组成的,并且每一个 AutoreleasePoolPage
的大小都是4096
字节(16 进制 0x1000)
#define I386_PGBYTES 4096
#define PAGE_SIZE I386_PGBYTES
parent
和child
就是用来构造双向链表的指针。
自动释放池中的 AutoreleasePoolPage
是以 双向链表 的形式连接起来的:
假设我们的一个 AutoreleasePoolPage
被初始化在内存的 0x100816000 ~ 0x100817000
中,它在内存中的结构如下:
其中有 56 bit 用于存储 AutoreleasePoolPage 的成员变量,剩下的 0x100816038 ~ 0x100817000 都是用来存储 加入到自动释放池中的对象 。
begin() 和 end() 这两个类的实例方法帮助我们快速获取 0x100816038 ~ 0x100817000 这一范围的边界地址。
- next 指向了下一个为空的内存地址,如果 next 指向的地址加入一个 object ,它就会如下图所示 移动到下一个为空的内存地址中 :
- 关于
hiwat
和depth
在文章中并不会进行介绍,因为它们并不影响整个自动释放池的实现,也不在关键方法的调用栈中。
POOL_SENTINEL(哨兵对象)
到了这里,你可能想要知道 POOL_SENTINEL
到底是什么,还有它为什么在栈中。首先回答第一个问题: POOL_SENTINEL
只是 nil
的别名。 定义如下:
#define POOL_SENTINEL nil
在每个自动释放池初始化调用
objc_autoreleasePoolPush
的时候,都会把一个
POOL_SENTINEL
push 到自动释放池的栈顶,并且返回这个
POOL_SENTINEL
哨兵对象。
int main(int argc, const char * argv[]) {
{
void * atautoreleasepoolobj = objc_autoreleasePoolPush();
// do whatever you want
objc_autoreleasePoolPop(atautoreleasepoolobj);
}
return 0;
}
上面的 atautoreleasepoolobj
就是一个 POOL_SENTINEL
。而当方法 objc_autoreleasePoolPop
调用时,就会向自动释放池中的对象发送 release
消息,直到POOL_SENTINEL
:
以上是关于内存管理总结-autoreleasePool的主要内容,如果未能解决你的问题,请参考以下文章
iOS基础 - autorelease 和 autoreleasepool