STL源码笔记(17)—二叉排序树BST(C++封装)

Posted NearXDU

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了STL源码笔记(17)—二叉排序树BST(C++封装)相关的知识,希望对你有一定的参考价值。

二叉排序树BST

STL中还有一类非常重要的容器,就是关联容器,比如map啊set啊等等,这些容器说实话,在应用层上还不能完全得心应手(比如几种容器效率的考虑等等),更别说源码了,因此这一部分打算稳扎稳打,好好做做笔记研究一番。
说到关联容器,我们想到了什么AVL树,红黑树等等,但大多时候我们仅仅局限于知道其名字,或者知道其概念,俗话说“talk is cheap,show me the code”,因此,我打算从他们的祖爷爷二叉排序树开始下手。(其实,侯老师的书上也是这么安排的哈)

1.概念

1.任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
2.任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
3.任意节点的左、右子树也分别为二叉查找树;
4.没有键值相等的节点。
二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为 O(logn) 。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、multiset、关联数组等。


2.性质

1.中序遍历是一个升序的有序序列。
2.搜索、插入、删除的复杂度等于树高,期望 O(logn) 最坏O(n)(数列有序,树退化成线性表)。


3.二叉排序树的实现

既然看到此,不如试着实现一下二叉排序树,主要需要包含这些操作:构建二叉排序树输入一个序列输出一个二叉排序树,插入、删除节点。

写代码之前考虑的问题:

1.二叉排序树的插入一定是在叶子节点处。

2.二叉排序树的删除需要考虑三种情况:
  a)待删除节点在叶子节点处
    直接另其父节点相应指针制空,并删除该节点即可。
  b)待删除节点只含有一个孩子(左子树为空或者右子树为空)
    将待删除节点父节点对应指针指向待删除节点的孩子节点。
  c)待删除节点即包含左右孩子都不为空
    找到待删除节点的右子树的最小值(右子树一路向左),并将该值替换待删除节点的值,最后删除最小值原本所在位置的节点(叶子节点)。

3.二叉排序树的中序遍历是升序。
4.摈弃以前的C语言写法,我这次想把BST封装成一个C++类,虽然困难重重,勉强实现了吧。
5.既然是C++类,在析构函数中做所有节点内存释放处理(最后一个根节点需要特殊处理)。

上述5个问题中除了对C++的熟悉程度外,涉及BST算法部分最麻烦的就是删除操作了,因为它考虑的情况比较多,这里贴出侯老师书中的示意图方便理解:

目标节点只有一个孩子节点

这里写图片描述

目标节点有两个子节点

这里写图片描述


代码

编译运行环境:Visual Studio 2013,Windows 7 32 bits

(1)二叉排序树的节点数据结构

//BSTNode.h
#ifndef __BSTNODE_H__
#define __BSTNODE_H__
#include<iostream>
class BSTNode{
public:
    BSTNode();
    BSTNode(int val);
    int value;
    BSTNode *lchild;
    BSTNode *rchild;
};
#endif

//--------------------------------------------
//--------------------------------------------
//--------------------------------------------

//BSTNode.cpp
#include "BSTNode.h"
BSTNode::BSTNode()
{
    value = 0;
    lchild = NULL;
    rchild = NULL;
}
BSTNode::BSTNode(int val)
{
    value = val;
    lchild = NULL;
    rchild = NULL;
}

(2)二叉排序树的C++类封装

//BST.h
#ifndef __BST_H__
#define __BST_H__
#include "BSTNode.h"
#include <vector>
#include <iostream>
class BSTNode;
class BST
{
    //说明:
    //为了数据结构私有化,不为外部访问,这里提供一些私有内部函数实现真正的操作以"__"开头。
    //对于public的接口来说,只需要直接调用内部函数即可
private:
    BSTNode * bstroot;//二叉排序树数据结构
    BSTNode * __search(BSTNode* root,const int& key);//查找关键字
    BSTNode * __treeMin(BSTNode*const root,BSTNode *&parent);//返回当前节点的最小孩子(一路向左)
    BSTNode * __treeMax(BSTNode*const root);//查找最大值(未实现)
    bool __Insert( const int &key);//插入节点
    bool __Delete(const int &key);//删除删除
    bool __isLeaf(BSTNode* const &);//判断是否是叶子节点
    bool __isNodeWithTwoChild(BSTNode * const &);//判断是否有两个孩子
    void __InorderTraversal(BSTNode *root,std::vector<int>&result);//中序遍历
    void __DeleteAllNodes(BSTNode *root);//删除所有节点
public:
    //构造函数
    BST();//默认构造函数
    BST(std::vector<int>arr);
    BST(int *arr, int len);
    //析构函数
    ~BST();
    bool isEmpty() const;//判断树空
    bool search(const int &key);//查找关键字是否存在的对外接口
    bool Insert(const int &key);//插入节点的外部接口
    bool Delete(const int &key);//删除节点的外部接口
    void InorderTraversal(std::vector<int>&);//中序遍历的外部接口
};
#endif

(3)二叉排序树C++类实现部分

//BST.cpp

#include "BST.h"

//判断树空
bool BST::isEmpty() const
{
    return bstroot == NULL;
}

//判断是否是叶子节点(删除部分用到)
bool BST::__isLeaf(BSTNode*const & root)
{
    if ((root->lchild == NULL) && (root->rchild == NULL))
        return true;
    else
        return false;
}

//判断节点是否有两个孩子(删除部分用到)
bool BST::__isNodeWithTwoChild(BSTNode * const & root)
{
    if (root->lchild != NULL &&root->rchild != NULL)
        return true;
    else
        return false;
}

//找到当前节点为根的子树中的最小值(删除部分用到,因此返回其父节点和当前节点)
BSTNode * BST::__treeMin(BSTNode*const root,BSTNode *&parent)
{
    BSTNode * curr = root;
    while (curr->lchild != NULL)
    {
        parent = curr;
        curr = curr->lchild;
    }
    return curr;
}

//删除节点内部实现
bool BST::__Delete(const int &key)
{
    bool found = false;//找到待删除的元素
    if (isEmpty())
    {
        std::cerr << "Binary Search Tree Is Empty" << std::endl;//BST为空
        return false;
    }
    BSTNode * curr = bstroot;
    BSTNode *parent = NULL;
    while (curr != NULL)//查找待删除节点
    {

        if (key == curr->value)
        {
            found = true;
            break;
        }
        else 
        {
            parent = curr;
            if (key < curr->value)
                curr = curr->lchild;
            else
                curr = curr->rchild;
        }
    }
    if (!found)
    {
        std::cerr << "KeyValue Not Found" << std::endl;
        return false;
    }
    if (NULL == parent)//删除最后一个节点(根节点需要特殊处理)
    {
        bstroot = NULL;
        delete curr;
        return true;
    }
    //对于待删除的节点有三种可能:
    //1.叶子节点
    //2.只包含左子树或者右子树(单个孩子)
    //3.既包含左子树又包含右子树
    //删除节点的时候需要分3种情况进行考虑

    if (__isLeaf(curr))//叶子节点
    {
        if (parent->lchild == curr)
            parent->lchild = NULL;
        else
            parent->rchild = NULL;
        delete curr;
        return true;
    }//end if
    else if (__isNodeWithTwoChild(curr))//有两个孩子的节点
    {
        //以当前节点的右子树中的最小值取代它
        BSTNode*parent=curr;
        BSTNode *tmp = __treeMin(curr->rchild,parent);
        curr->value = tmp->value;
        if (parent->rchild == tmp)
            parent->rchild = NULL;
        else
            parent->lchild = NULL;
        delete tmp;
        return true;
    }//end else-if
    else//只有一个孩子的节点
    {
        if (curr->lchild != NULL)//只有左孩子
        {
            if (parent->lchild == curr)
            {
                parent->lchild = curr->lchild;
                delete curr;
                return true;
            }
            else
            {
                parent->rchild = curr->lchild;
                delete  curr;
                return true;
            }
        }
        if (curr->rchild != NULL)//只有右孩子
        {
            if (parent->lchild == curr)
            {
                parent->lchild = curr->rchild;
                delete curr;
                return true;
            }
            else
            {
                parent->rchild = curr->rchild;
                delete  curr;
                return true;
            }
        }
    }//end else
    return false;
}
//删除操作的外部接口
bool BST::Delete(const int &key)
{
    return __Delete(key);
}

//插入节点的内部实现,插入操作一定都在叶子节点处。
bool BST::__Insert(const int & key)
{
    BSTNode* t = new BSTNode(key);//临时节点
    BSTNode*parent = NULL;
    if (isEmpty())//新树
    {
        bstroot = t;
        return true;
    }
    else
    {
        BSTNode* curr;
        curr = bstroot;
        while (curr)
        {
            //插入位置都位于叶子节点处
            parent = curr;
            if (t->value > curr->value)
                curr = curr->rchild;
            else
                curr = curr->lchild;
        }
        if (t->value < parent->value)
        {
            parent->lchild = t;
            return true;
        }
        else
        {
            parent->rchild = t;
            return true;
        }
    }
    return false;
}
//插入节点的外部接口
bool BST::Insert(const int &key)
{
    return __Insert(key);
}

//构造函数
BST::BST()//默认构造函数
{
    bstroot = NULL;
}
BST::BST(int*arr, int len)//数组构造
{
    bstroot = NULL;
    for (int i = 0; i < len; i++)
    {
        __Insert(*(arr + i));
    }
}

BST::BST(std::vector<int>arr)//容器构造
{
    bstroot = NULL;
    for (int i = 0; i < (int)arr.size(); i++)
    {
        __Insert(arr[i]);
    }
}

//内部查找函数
//递归调用
BSTNode* BST::__search(BSTNode*root,const int& key)
{
    if (NULL == root)
        return NULL;
    if (key == root->value)
        return root;
    else if (key < root->value)
        return __search(root->lchild, key);
    else
        return __search(root->rchild, key);
}
//查找函数接口
bool BST::search(const int& key)
{
    BSTNode*t = __search(bstroot, key);
    return t == NULL ? false : true; 
}

//中序遍历内部实现
void BST::__InorderTraversal(BSTNode *root,std::vector<int>&result)
{
    if (NULL == root)
        return;
    __InorderTraversal(root->lchild, result);
    std::cout << root->value << " ";
    result.push_back(root->value);
    __InorderTraversal(root->rchild, result);
}
//中序遍历接口,vector保存遍历结果
void BST::InorderTraversal(std::vector<int>&result)
{
    __InorderTraversal(bstroot, result);
}

//删除所有节点(析构用)
void BST::__DeleteAllNodes(BSTNode *root)
{
    if (root == NULL)
    {
        return;
    }
    __DeleteAllNodes(root->lchild);
    __DeleteAllNodes(root->rchild);
    __Delete(root->value);
}

//析构函数
BST::~BST()
{
    BSTNode*curr = bstroot;
    __DeleteAllNodes(curr);
}

(4)二叉排序树的测试代码

//main.cpp
#include "BST.h"
int main()
{
    std::vector<int>vec = { 8,6,2,5,1,3,7 };
    BST bst(vec);
    bst.Delete(9);//Not found

    bst.Insert(4);
    bool found=bst.search(4);
    if (!found)
        std::cout << "not found" << std::endl;
    else
        std::cout << "found!" << std::endl;
    std::vector<int>result;
    bst.InorderTraversal(result);
    std::cout << std::endl;
    for (int i = 0; i < result.size(); i++)
    {
        std::cout << result[i] << " ";
    }
    std::cout << std::endl;
    system("pause");
    return 0;
}

4.参考

http://www.cplusplus.com/forum/general/1551/

以上是关于STL源码笔记(17)—二叉排序树BST(C++封装)的主要内容,如果未能解决你的问题,请参考以下文章

STL源码笔记(18)—平衡二叉树AVL(C++封装+模板)

C++ 实现二叉排序树(搜索树BST)(完整代码)

哈夫曼树;二叉树;二叉排序树(BST)

C++二叉搜索树(BST)

C++实现的二叉搜索树BST

stl mapset之红黑树