数据结构的扩张

Posted AlanTu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构的扩张相关的知识,希望对你有一定的参考价值。

前言:通常我们会遇到一些问题,采用一些标准的数据结构,如双链表、散列表或二叉查找数时,不能够满足操作要求,需要对这些数据结构进行扩张,添加一些额外的信息使得能够完成新的操作。附加的信息需要对数据结构的某些操作进行调整,这个是非常关键的步骤,决定着数据结构扩张是否能够实现。本章主要讨论了红黑树结构的扩张,介绍了两种扩张方式。第一种方式扩张使得红黑色能够支持动态集合上顺序统计,快速找出集合中第i小的数,或给出某个元素在集合的全序中的排名。第二种方式扩张使得红黑色能够进行区间操作,可以很快地找到集合中覆盖的区间。关于红黑色请参考第13章,http://www.cnblogs.com/Anker/archive/2013/01/30/2882773.html

1、动态顺序统计

  在第九章介绍了顺序统计的概念,大概的意思是在包含有n个元素的集合中,第i个顺序统计量指的是该集合中第i小的元素。在一个无序的集合中,任意顺序统计量都可以在O(n)时间内找到,详细情况可以参考http://www.cnblogs.com/Anker/archive/2013/01/25/2877311.html。书中在此基础上修改红黑树的结构,使得任意的顺序统计量都可以再O(lgn)时间内确定。向红黑树的结构中添加一个size域,表示包含自身节点的当前节点的子树节点的数目。这样修改后可以快速支持顺序统计量操作,将这种修改后的红黑树叫做:顺序统计量树T。修改后的结构如下所示:

复制代码
struct RBTreeNode
{
   int key;
   int color;
   struct RBTreeNode *parent;
   struct RBTreeNode *left;
   struct RBTreeNode *right;
   int size;  
};
复制代码

例如给定红黑树的一个节点x,则size[x] = size[left[x]]+size[right[x]]+1。size[x]为包含以x为根的子树的节点数(包含x本身),即子树的大小。如果哨兵定义为0,即设置size[nil[T]]=0

下面给出一个修改后的红黑树的例子,如下图所示:

  红黑树是二叉排序树,按照中序遍历从小到大输出红黑树中的关键字。从图中可以看出,添加size域后,很方便看出每个节点的子树的节点数目(包含自身节点)。书中在后面讨论这种结构的操作,分别讨论如下:

(1)检索具有给定排序的元素

  过程OS_SELECT(x,i)返回一个指向以x为根的子树中包含第小关键字的结点的指针,即为了找出顺序统计量树T中的第i小关键字,可以调用OS_SELECT(root[T],i)。书中给出了伪代码如下:

复制代码
OS_SELECT(x,i)
    r = size[left[x]]+1; //先计算x的处于的位置
    if i = r         //x正好是第i小的关键字
        then return x;
    else if i < r   //x比第i关键字大,则在其左子树查找
        then return OS_SELECT(left[x],i)
    else return OS_SELECT(right[x],i-r)  //x比第i关键字小,则在其右子树查找
复制代码

  该过程类似二分查找,每一次递归调用都在顺序统计数中下降一层,故最坏情况下OS_SELECT的总时间与树的高度成正比,红黑树的高度为lgn。故OS_SELECT的运行时间为:O(lgn)。

(2)确定一个元素的秩(位置)

  给定指向一顺序统计树T中节点x的指针,求x在顺序统计树中序遍历得到的线性序中的位置。书中给出了OS_RANK(T,x)过程的伪代码:

复制代码
OS_RANK(T,x)
    r = size[left[x]]+1;   //获取以x为根子树中x的位置(中序遍历)
    y = x;
    while y != root[T]    //从下向上直到根节点
          do if y = right[p[y]]   //如果是右子树
                  then  r = r + size[left[p[y]]]+1; 
          y = p[y]; //向上移动
    return r;
复制代码

从程序总可以看出当y == root[T]时候循环终止,此时以y为根的子树是课完整树,此时r值是这颗整树中key[x]的秩。while循环中的每一次迭代花O(1)时间,且y在每次迭代中沿树上升一层,故在最坏情况下0S_RANK的运行时间与树的高度成正比:对含n个节点的顺序统计树时间为O(lgn)。

(3)对子树规模的维护

  在红黑树中添加size域后,能够通过OS_SELECT和OS_RANK迅速计算出所需的顺序统信息。通过修改红黑树的插入和删除操作,在此过程是通过旋转来修改size域。关于这部分需要在红黑树的基础上进行改进,比较复杂,暂时没有实现。

2、如何扩张数据结构

对一种数据结构的扩张过程分为四个步骤:

1)选择基础数据结构

2)确定要在基础数据结构中添加哪些信息

3)验证可用基础数据结构上的基本修改操作来维护这些新添加的信息

4)设计新的操作

  书中给出了对红黑树进行扩张的定理,并给出了证明,这个看的时候有些难度,暂时跳过了。大概意思就是说当红黑树被选作基础数据结构时,某些类型的附加信息总是可以用插入和删除来进行有效地维护。

3、区间树

  这小结讲的是扩张红黑树以支持由区间构成的动态集合上的操作。区间可以很方便的表示各占用一段连续时间的一些事情。区间树是一种动态集合进行维护的红黑树,该集合中的每个元素x都包含在一个区间int[x]。区间树支持下列操作:

INTERVAL_INSERT(T,x):将包含区间域int的元素x插入到区间树T中

INTERVAL_DELETE(T,X):从区间树T中删除元素x

INTERVAL_SEARCH(T,i):返回一个指向区间树T中元素x的指针,使int[x]与i重叠,若集合中无此元素存在,则返回nil[T]。

修改红黑树得到的区间树如下图所示:

从图可以看出,对区间树以每个节点的左端点值进行中序变量即可得到有序的序列。有了区间树的结果就很容易实现其相关操作。

 

 

红黑树

摘要:

  红黑树是一种二叉查找树,但在每个结点上增加了一个存储位表示结点的颜色,可以是RED或者BLACK。通过对任何一条从根到叶子的路径上各个着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。本章主要介绍了红黑树的性质、左右旋转、插入和删除。重点分析了在红黑树中插入和删除元素的过程,分情况进行详细讨论。一棵高度为h的二叉查找树可以实现任何一种基本的动态集合操作,如SEARCH、PREDECESSOR、SUCCESSOR、MIMMUM、MAXMUM、INSERT、DELETE等。当二叉查找树的高度较低时,这些操作执行的比较快,但是当树的高度较高时,这些操作的性能可能不比用链表好。红黑树(red-black tree)是一种平衡的二叉查找树,它能保证在最坏情况下,基本的动态操作集合运行时间为O(lgn)。本章内容有些复杂,看了两天,才大概清楚其插入和删除过程,日后需要经常回顾,争取完全消化掉。红黑树的用途非常广泛,例如STL中的map就是采用红黑树实现的,效率非常之高,有机会可以研究一下STL的源代码。

1、红黑树的性质

  红黑树中的每个结点包含五个域:color、key、left、right和parent。如果某结点没有一个子结点或父结点,则该结点相应的指针parent域包含值为NIL(NIL并是是空指针,此处有些迷惑,一会解释)。把NIL视为指向红黑树的外结点(叶子)的指针,而把带关键字的结点视为红黑树的内结点。红黑树结点结构如下所示:

复制代码
 1 #define RED  0
 2 #define BLACK 1
 3 struct RedBlackTreeNode
 4 { 
 5     T key;
 6     struct RedBlackTreeNode * parent;
 7     struct RedBlackTreeNode * left;
 8     struct RedBlackTreeNode * right;
 9     int color;
10 };
复制代码

红黑树的性质如下:

(1)每个结点或是红色,或是黑色。

(2)根结点是黑色。

(3)每个叶子结点(NIL)是黑色。

(4)如果有一个结点是红色,则它的两个儿子都是黑色。

(5)对每个结点,从该结点到其孙子结点的所有路径上包含相同数目的黑色结点。

如下图是一棵红黑树:

从图可以看出NIL不是空指针,而是一个叶子结点。实际操作的时候可以将NIL视为哨兵,这样便于对黑红色进行操作。红黑树的操作主要是对内部结点操作,因为内部结点存储了关键字的值。书中为了便于讨论,忽略了叶子结点的,如是上图红黑树变成如下图所示:

  书中给出了黑高度的概念:从某个结点x出发(不包含该结点)到达一个叶子结点的任意一条路径上,黑色结点的个数称为该结点的黑高度。由红黑树的性质(5)可知,从该结点出发的所有下降路径都有相同的黑色结点个数。红黑树的黑高度定义为其根结点的黑高度。

  书中给出了一个引理来说明为什么红黑树是一种好的查找树,并对引理进行了证明(采用归纳法进行证明的,需要很强的归纳推理知识,正是我的不足之处,看书的痛苦在于此)。

引理:一棵有n个内结点的红黑树的高度之多为2lg(n+1)。

2、旋转

  在红黑树上进行结点插入和删除操作时,会改变树的结构形状,导致结果可能不满足了红黑树的某些性质,为了保证每次插入和删除操作后,仍然能报维持红黑树的性质,需要改变树中某些结点的颜色和指针结构。其中的指针结构的改变通过旋转完成的。书中给出了两种旋转:左旋转和右旋转。如下图是旋转过程:

  从图可以得出左右旋转的过程,假设对某个结点x进行左旋转,y是x的右孩子,则左旋转过程为:以x和y之间的链为“支轴”进行的,使得x的右孩子为y的左孩子,y的父节点为x的父节点,y的左孩子为x。书中给出了左旋转的伪代码如下:

复制代码
 1 LEFT_ROTATE(T,x)
 2    y = right[x]   //获取右孩子
 3    rihgt[x] = left[y]  //设置x的右孩子为y的左孩子
 4    if left[y] != NIL
 5        then parent[left[x]] = x
 6     parent[y] = parent[x]  //设置y的父节点为x的父节点
 7     if parent[x] == NIL
 8        then root[T] = y
 9        else if x==left[parent[x]
10               then left[parent[x]] = y
11               else  right[[parent[x]] = y
12     left[y] = x  //设置y的左孩子为x
13     parent[x] =y
14 
15    
复制代码

假设对某个结点y进行右旋转,x是y的左孩子,则左旋转过程为:y的左孩子设置为x的右孩子,将x的父节点设置为y的父节点,x的右孩子设置为y。书中并没有给出右旋转的伪代码,参照左旋转的伪代码很容易实现:

复制代码
 1  RIGHT_ROTATE(T,y)
 2      x = left[y]    //获取左孩子
 3      left[y] = right[x] //设置y的左孩子为x的右孩子
 4      if right[x] != NIL
 5         then parent[right[x]] = y
 6      parent[x] = parent[y]  //设为x的父节点为y的父结点
 7      if parent[y] == NIL
 8          then root = x
 9          else if y== left[parent[y]]
10                then left[parent[y]] = x
11                else  right[parent[y]] = x
12      right[x] = y //设置x的右孩子为y
13      parent[y] = x
复制代码

 为了更好的理解旋转操作,书中给出了一个左旋转的例如,如下图所示:

3、插入

  红黑树插入一个新结点的过程RB_INSERT是在二叉查找树插入过程的基础上改进的,先按照二叉排序的插入过程插入到红黑树中,然后将新插入的结点标记为红色(疑问:为什么是红色,而不是黑色呢?),然后调用一个辅助的过程RB_INSERT_FIXUP来调整结点并重新着色,使得满足红黑树的性质。关于二叉查找树的插入过程可以参考上一篇日志:http://www.cnblogs.com/Anker/archive/2013/01/28/2880581.html。书中给出了RB_INSERT的伪代码:

复制代码
 1 RB_INSERT(T,z)
 2   y = NIL
 3   x =root(T)
 4   while x != NIL
 5        do y=x
 6            if key[z]<key[x]
 7              then x=left[x]
 8              else  x=right[x]
 9   parent[z] = y
10   if y =NIL
11      then root =z
12      else if key[z] < key[y]
13             then left[y] =z
14             else  right[y] =z
15    left[z] = NIL
16    right[z] =NIL
17    color[z] = RED  //新插入结点标记为红色
18    RB_INSERT_FIXUP(T,z)  //进行调整,使得满足红黑树性质
复制代码

  红黑树的插入过程最主要的是RB_INSERT_FIXUP过程,书中发了很大的篇幅进行介绍。首先分析了当插入一个新的结点后,会破坏红黑树的哪些性质,然后针对可能的破坏性质进行分类讨论并给出了给出了解决办法。因为每次插入的新元素标记为RED,这样可能性质2(根节点为黑色)和性质4(一个红结点的左右孩子都是黑色的)被破坏。例如下图插入一个新结点,破坏了性质4。

      如果每次插入新的结点z导致红黑树性质被破坏,则之多只有一个性质被破坏,并且不是性质2就是性质4。违反性质2是因为z是根且为红色,违反性质4是因为z和其父节点parent[z]都是红色的。

  如果性质2被违反了,则红色的根必定是新增的结点z,它是树中唯一的内结点,由于z的父接点和两个子女都是NIL(黑色),不违反性质4。违反性质2在整个插入过程中只有这一次。所以对于违反性质2的结点,直接将其结点变成黑色即可。

  剩下的问题是对于违反性质4的处理,在插入新结点z之前,红黑树的性质没有被破坏。插入结点z后违反性质4,必定是因为z和其父亲结点parent[z]都是红色的,此时只违反性质4,而没有违反其他性质。假设新插入结点z,导致红黑树性质4被破坏,此时z和其父节点parent[z]都是红色,由于在插入结点z之前红黑树的性质没有被破坏,parent[z]是红色,很容易推出z的祖父结点parent[parent[z]]必定是黑色。此时根据parent[z]是parent[parent[z]]的左孩子还是右孩子进行讨论。因为左右之间是对称的,书中只给出了parent[z]作为parent[parent[z]]的左孩子进行讨论的,然后给出了三种可能的情况。

情况1):z的叔叔结点y是红色的

  此时parent[z]和y都是红色的,解决办法是将z的父节点parent[z]和叔叔结点y都着为黑色,而将z的祖父结点parent[parent[z]]着为红色,然后从祖父结点parent[parent[z]]继续向上判断是否破坏红黑树的性质。处理过程如下图所示:

情况2):z的叔叔y是黑色的,而且z是右孩子

情况3):z的叔叔y是黑色的,而且z是左孩子

  情况2和情况3中y都是黑色的,通过z是左孩子还是右孩子进行区分的。可以将情况2通过旋转为情况3。情况2中z是右孩子,旋转后成为情况3,使得z变为左孩子,可以在parent[z]结点出使用一次左旋转来完成。无论是间接还是直接的通过情况2进入到情况3,z的叔叔y总是黑色的。在情况3中,将parent[z]着为黑色,parent[parent[z]]着为红色,然后从parent[parent[z]]处进行一次右旋转。情况2、3修正了对性质4的违反,修正过程不会导致其他的红黑性质被破坏。修正过程如下图所示:

  给一个完整的例子来说明插入过程,如下图所示:

  书中给出了RB_INSERT_FIXUP的伪代码,伪代码中只给出了z的父节点为左孩子的情况,为右孩子的情况与左孩子的情况是对称的,只需将左孩子中的right换成left即可。

复制代码
 1 RB_INSERT_FIXUP(T,z)
 2          while color[parent[z]] = RED
 3            do if parent[z] == left[parent[parent[z]]]
 4                   then y = right[parent[parent[z]]]
 5                        if color[y] == RED    //情况1,z的叔叔为红色
 6                             then color[parent[z]] = BLACK
 7                                  color[y] = BLACK
 8                                  color[parent[parent[z]]=RED 
9 z= parent[parent[z]] 10 else if z == right[parent[z]] //情况2,z的叔叔为黑色,z为右孩子 11 then z = parent[z] 12 LEFT_ROTATE(T,z) 13 color[parent[z]]=BLACK //情况3,z的叔叔为黑色,z为左孩子 14 color[parent[parent[z]] = RED 15 RIGHT_ROTATE(T, parent[parent[z]]) 16 else (same as then clause with “right” and “left” exchanged) 17 color(root(T)) = BLACK; //将根结点设置为黑色
复制代码

4、删除

   删除过程最复杂,看了好多遍才明白个大概,需要反复看,多想删除过程中会破坏哪些性质,然后又针对性的去调整。

  红黑树删除结点过程是在二叉查找树删除结点过程的基础改进的。与二叉查找树类似,删除的结点分为三种情况:<1>无左右孩子、<2>有左孩子或者右孩子、<3>既有树=左孩子又有右孩子。删除过程可以参考前一篇日志:http://www.cnblogs.com/Anker/archive/2013/01/28/2880581.html。红黑树在删除结点后需要检查是否破坏了红黑树的性质。如果删除的结点y是红色的,则删除后的树仍然是保持红黑树的性质,因为树中各个结点的黑高度没有改变,不存在两个相邻(父结点和子结点)的红色结点,y是红色不可能是根,所有根仍然是黑色。如果删除的结点z是黑色的,则这个是破坏了红黑树的性质,需要调用RB_DELETE_FIXUP进行调整。从删除结点y的唯一孩子结点x或者是NIL处开始调整。书中给出了RB_DELETE的伪代码:

复制代码
 1 RB_DELETE(T,z)
 2      if left[z] ==NIL or right[z] == NIL
 3         then y=z
 4         else  y=TREE_SUCCESSOR(z)
 5     if left[y] != NIL
 6         then x=left[y]
 7         else  x=right[y]
 8     parent[x] = parent[y]
 9     if p[y] ==NIL
10        then root[T] =x
11        else if y = left[[prarnt[y]]
12                    then left[parent[y]] = x
13                    else  right[parent[y]] =x
14      if y!=z
15          then key[z] = key[y]
16                copy y\'s data into z
17      if color[y] == BLACK    //当被删除结点为黑色时候进行调整
18          then RB_DELETE_FIXUP(T,x)
19       return y
复制代码

  书中分析了被删除结点y是黑色会产生的问题:首先,如果y是根,而y的一个红色孩子变成了新根,则违反了性质2。其次,如果x和parent[y](此时parent[x] = parent[y])都是红色,就违反了性质4。第三,删除y将会导致先前包含y的任何路径上黑结点个数减少1,违反了性质5。书中给出了解决第三个问题的办法:将结点x设为还有额外的一重黑色(此处看的不是很明白,我的理解是是不管是x是什么颜色,将x增加了额外一重黑色,这样可以保证黑结点数目增加1个),即将任意包含结点x的路径上黑结点个数加1,这样可以保证性质5成立。当将黑色结点y被删除时,将其黑色“下推”至其子结点,导致问题变成为结点x可能即不是红,又不是黑,从而违反性质1。因为给x增加了一种颜色,即结点x是双重黑色或者是红黑色。这样就分别给包含x的路径上黑结点个数贡献2个或1个。但是x的color属性仍然是RED(如果x是红黑的)或BLACK(如果x是双重黑色)。换而言之,一个结点额外的黑色反映在x指向它,而不是它的color属性。

  过程RB_DELETE_FIXUP恢复性质1,2,4。对于恢复性质2、4很简单,因为x是红色,所有直接将x结点着为黑色即可。书中着重介绍了如何恢复性质1。此时x是黑色,需要根据x是左孩子还是右孩子两种情况进行恢复,因为左右是对称的,书中只给出了x是左孩子的恢复过程。将x作为第一个额外的黑色结点,从x结点开始循环,将额外的黑色结点沿着树向上移,直到:

(1)x指向一个红黑结点,此时将x单独着为黑色。

(2)x指向根,这时可以简单地消除那个额外的黑色,或者

(3)做必要的旋转和颜色改变

在循环过程中,x总是指向具有双重黑色的那个非根结点。设w是x的兄弟结点,因为x是双重黑色的,故w不可能是NIL。书中分四种情况讨论:

情况1:x的兄弟w是红色的

          此时因为x是双重黑色,贡献两个黑色结点,所有w必有黑色孩子。此时将w着为黑色,parent[x]为红色,在对parent[x]做一次左旋转。此时x的新兄弟w是黑色,这样将情况1转换为情况2、3或4。情况1的处理过程下图所示:

情况2:x的兄弟w是黑色的,而且w的两个孩子都是黑色的。

     处理过程是从x和w上去掉一重黑色,即x只有一重黑色而w着为红色,给x的父节点parent[x]添加额外黑色。处理过程如下图所示:

 

情况3:x的兄弟w是黑色的,w的左孩子是红色的,右孩子是黑色的

       交换w和其左孩子left[w]的颜色,并对w进行右旋转。旋转后x的新兄弟w是一个有红色右孩子的黑结点,转换成了情况4。处理过程如下图所示:

情况4:x的兄弟w是黑色的,而且w的右孩子是红色的。

  执行过程是将w的颜色设置为parent[x]的颜色,将parent[x]的颜色设置为黑色,将w的右孩子着为黑色,然后在parent[x]做一次右旋,最后将x设置为根root。处理过程如下图所示:

书中给出了RB_DELETE_FIXUP的伪代码:

复制代码
 1 RB_DELETE_FIXUP(T,x)
 2    while x!= root[T] and color[x] ==BLACK
 3          do if x == left[parent[x]]
 4                then w = right[parent[x]]
 5                     if color[w] == RED  //case 1 x的兄弟w是红色的
 6                        then color[w] = BLACK
 7                             color[parent[x]] = RED
 8                             LEFT_ROTATE(T,PARENT[x])
 9                             w = right[parent[x]]
10                        if color[left[w]] == BLACK and color[right[w]] = BLACK
11                           then color[w] = RED  //case 2
12                             x = parent[x]
13                            else if color[right[w]] =BLACK
14                                   then color[left[w]] = BLACK //case 3
15                                        color[w] = RED
16                                        RIGHT_ROTATE(T,w)
17                                        w = right[parent[x]]
18                                color[w] = color[parent[x]] //case 4
19                                color[parent[x]] = BLACK
20                                color[right[w]] = BLACK
21                                LEFT_ROTATE(T,parent[x])
22                                x=root(T)
23              else(same as then clasue with “right” and “left” exchanged)
24      color[x]=BLACK
复制代码

5、编程实现

  这一章看了两天,宏观上把握了红黑树的插入和删除操作,中间还有细节问题需要思考。看完后要实现才能消化,于是我采用C++语言设计了简单的红黑树结点和红黑树类,设计的类如下所示:

复制代码
 1 static const int RED = 0;
 2 static const int BLACK = 1;
 3 
 4 template <class T>
 5 class RedBlackTreeNode
 6 {
 7 public:
 8     RedBlackTreeNode():key(T()),parent(NULL),left(NULL),right(NULL),color(BLACK){}
 9     T key;
10     RedBlackTreeNode<T>* parent;
11     RedBlackTreeNode<T>* left;
12     RedBlackTreeNode<T>* right;
13     int color;
14 };
15 
16 template <class T>
17 class RedBlackTree
18 {
19 public:
20     RedBlackTree();
21     int search_element(const T& k) const;
22     int get_minmum(T& retmin)const;
23     int get_maxmum(T& retmax)const;
24     int get_successor(const T& k,T& ret) const;
25     int get_predecessor(const T& k,T& ret) const;
26     int insert_key(const T& k);
27     int delete_key(const T& k);
28     void inorder_tree_walk()const;
29     RedBlackTreeNode<T>* get_root() const;
30     ~RedBlackTree();
31 private:
32     RedBlackTreeNode<T>* root;
33     static  RedBlackTreeNode<T> *NIL;
34     RedBlackTreeNode<T>* get_parent(RedBlackTreeNode<T>* pnode) const;
35     RedBlackTreeNode<T>* get_left(RedBlackTreeNode<T>* pnode) const;
36     RedBlackTreeNode<T>* get_right(RedBlackTreeNode<T>* pnode) const;
37     T get_key(RedBlackTreeNode<T>* pnode) const;
38     int get_color(RedBlackTreeNode<T>* pnode) const;
39     void set_color(RedBlackTreeNode<T>* pnode,int color);
40     void left_rotate(RedBlackTreeNode<T> *pnode);
41     void right_rotate(RedBlackTreeNode<T> *pnode);
42     void rb_insert_fixup(RedBlackTreeNode<T> *pnode);
43     void rb_delete_fixup(RedBlackTreeNode<T> *pnode);
44     RedBlackTreeNode<T>* get_maxmum(RedBlackTreeNode<T> *root) const;
45     RedBlackTreeNode<T>* get_minmum(RedBlackTreeNode<T> *root) const;
46     RedBlackTreeNode<T>* get_successor(RedBlackTreeNode<T> *pnode) const;
47     RedBlackTreeNode<T>* get_predecessor(RedBlackTreeNode<T> *pnode) const;
48     RedBlackTreeNode<T>* search_tree_node(const T& k)const;
49     void make_empty(RedBlackTreeNode<T>* root);
50 };
复制代码

设计过程中采用了C++的模板类型,这样可以支持多种数据类型,使得程序具备扩展性,完整的程序实现如下所示:

  1 #include <iostream>
  2 #include <stack>
  3 using namespace std;
  4 
  5 static const int RED = 0;
  6 static const int BLACK = 1;
  7 
  8 template <class T>
  9 class RedBlackTreeNode
 10 {
 11 public:
 12     RedBlackTreeNode():key(T()),parent(NULL),left(NULL),right(NULL),color(BLACK){}
 13     T key;
 14     RedBlackTreeNode<T>* parent;
 15     RedBlackTreeNode<T>* left;
 16     RedBlackTreeNode<T>* right;
 17     int color;
 18 };
 19 
 20 template <class T>
 21 class RedBlackTree
 22 {
 23 public:
 24     RedBlackTree();
 25     int search_element(const T& k) const;
 26     int get_minmum(T& retmin)const;
 27     int get_maxmum(T& retmax)const;
 28     int get_successor(const T& k,T& ret) const;
 29     int get_predecessor(const T& k,T& ret) const;
 30     int insert_key(const T& k);
 31     int delete_key(const T& k);
 32     void inorder_tree_walk()const;
 33     RedBlackTreeNode<T>* get_root() const;
 34     ~RedBlackTree();
 35 private:
 36     RedBlackTreeNode<T>* root;
 37     static  RedBlackTreeNode<T> *NIL;
 38     RedBlackTreeNode<T>* get_parent(RedBlackTreeNode<T>* pnode) const;
 39     RedBlackTreeNode<T>* get_left(RedBlackTreeNode<T>* pnode) const;
 40     RedBlackTreeNode<T>* get_right(RedBlackTreeNode<T>* pnode) const;
 41     T get_key(RedBlackTreeNode<T>* pnode) const;
 42     int get_color(RedBlackTreeNode<T>* pnode) const;
 43     void set_color(RedBlackTreeNode<T>* pnode,int color);
 44     void left_rotate(RedBlackTreeNode<T> *pnode);
 45     void right_rotate(RedBlackTreeNode<T> *pnode);
 46     void rb_insert_fixup(RedBlackTreeNode<T> *pnode);
 47     void rb_del

以上是关于数据结构的扩张的主要内容,如果未能解决你的问题,请参考以下文章

算法导论读书笔记-第十四章-数据结构的扩张

[翻译] 扩张卷积 (Dilated Convolution)

tensor的维度扩张的手段--Broadcasting

宏观扩张的奇怪结果

VSCode自定义代码片段5——HTML元素结构

VSCode自定义代码片段5——HTML元素结构