数据规整化——合并

Posted Chris_math

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据规整化——合并相关的知识,希望对你有一定的参考价值。

数据集的合并或连接运算是通过一个或多个键将行链接起来的,而pandas的merge函数是对数据应用这些算法的主要切入点。

一对多:df1的数据有多个被标记为a和b的行,而df2中key列的每个值则仅对应一行。

df1 = DataFrame({\'key\': [\'b\', \'b\', \'a\', \'c\', \'a\', \'a\', \'b\'],
                 \'data1\': range(7)})
df2 = DataFrame({\'key\': [\'a\', \'b\', \'d\'],
           \'data2\': range(3)})

注意:若没有指定哪个列进行连接,则默认将重叠列的列名当作键。

pd.merge(df1, df2)
pd.merge(df1, df2, on=\'key\')

 若两个对象的列名不同,也可以分别进行指定:

df3 = DataFrame({\'lkey\': [\'b\', \'b\', \'a\', \'c\', \'a\', \'a\', \'b\'],
                 \'data1\': range(7)})
df4 = DataFrame({\'rkey\': [\'a\', \'b\', \'d\'],
                 \'data2\': range(3)})
pd.merge(df3, df4, left_on=\'lkey\', right_on=\'rkey\')
#默认merge做的事inner连接,结果是键的交集,其他方式有left、right、outer
pd.merge(df1, df2, how=\'outer\')

多对多

df1 = DataFrame({\'key\': [\'b\', \'b\', \'a\', \'c\', \'a\', \'b\'],
                 \'data1\': range(6)})
df2 = DataFrame({\'key\': [\'a\', \'b\', \'a\', \'b\', \'d\'],
                 \'data2\': range(5)})
#多对多产生的是行的笛卡尔积 left
pd.merge(df1, df2, on=\'key\', how=\'left\')
#连接方式只影响出现在结果中的键 inner
pd.merge(df1, df2, how=\'inner\')

若要根据多个键进行合并,需传入一个由列名组成的列表:

left = DataFrame({\'key1\': [\'foo\', \'foo\', \'bar\'],
                  \'key2\': [\'one\', \'two\', \'one\'],
                  \'lval\': [1, 2, 3]})
right = DataFrame({\'key1\': [\'foo\', \'foo\', \'bar\', \'bar\'],
                   \'key2\': [\'one\', \'one\', \'one\', \'two\'],
                   \'rval\': [4, 5, 6, 7]})
pd.merge(left, right, on=[\'key1\', \'key2\'], how=\'outer\')

对于合并运算需要考虑的最后一个问题是对重复列名的处理。而merge的suffixes选项,正用于指定附加到左右两个dataframe对象的重复列名上的字符串:

pd.merge(left, right, on=\'key1\')
pd.merge(left, right, on=\'key1\', suffixes=(\'_left\', \'_right\'))

索引的合并有时候连接键位于其索引中,则可以传入left_index=True或right_index=True以说明索引应该被用作连接键。

left1 = DataFrame({\'key\': [\'a\', \'b\', \'a\', \'a\', \'b\', \'c\'],
                  \'value\': range(6)})
right1 = DataFrame({\'group_val\': [3.5, 7]}, index=[\'a\', \'b\'])
pd.merge(left1, right1, left_on=\'key\', right_index=True)
#外连接
pd.merge(left1, right1, left_on=\'key\', right_index=True, how=\'outer\')

层次化索引数据,必须以列表的形式指明用作合并键的多个列

lefth = DataFrame({\'key1\': [\'Ohio\', \'Ohio\', \'Ohio\', \'Nevada\', \'Nevada\'],
                   \'key2\': [2000, 2001, 2002, 2001, 2002],
                   \'data\': np.arange(5.)})
righth = DataFrame(np.arange(12).reshape((6, 2)),
                   index=[[\'Nevada\', \'Nevada\', \'Ohio\', \'Ohio\', \'Ohio\', \'Ohio\'],
                          [2001, 2000, 2000, 2000, 2001, 2002]],
                   columns=[\'event1\', \'event2\'])
pd.merge(lefth, righth, left_on=[\'key1\', \'key2\'], right_index=True)
pd.merge(lefth, righth, left_on=[\'key1\', \'key2\'],
         right_index=True, how=\'outer\')

 直接合并双方的索引也可以:

left2 = DataFrame([[1., 2.], [3., 4.], [5., 6.]], index=[\'a\', \'c\', \'e\'],
                 columns=[\'Ohio\', \'Nevada\'])
right2 = DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
                   index=[\'b\', \'c\', \'d\', \'e\'], columns=[\'Missouri\', \'Alabama\'])

 

pd.merge(left2, right2, how=\'outer\', left_index=True, right_index=True)
#join实例方法,更为方便地按索引合并
left2.join(right2, how=\'outer\')

 轴向连接:pd.concatenation 简单数据连接

arr = np.arange(12).reshape((3, 4))
\'\'\'
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
\'\'\'
np.concatenate([arr, arr], axis=1)
\'\'\'
array([[ 0,  1,  2,  3,  0,  1,  2,  3],
       [ 4,  5,  6,  7,  4,  5,  6,  7],
       [ 8,  9, 10, 11,  8,  9, 10, 11]])
\'\'\'

pandas的concat函数提供了一种能够轴向连接的方式。

s1 = Series([0, 1], index=[\'a\', \'b\'])
s2 = Series([2, 3, 4], index=[\'c\', \'d\', \'e\'])
s3 = Series([5, 6], index=[\'f\', \'g\'])
pd.concat([s1, s2, s3])
#默认concat的axis=0返回Series对象,而axis=1则返回dataframe对象
pd.concat([s1, s2, s3], axis=1)
concat函数的参数
参数 说明
objs 参与连接的pandas对象的列表或者字典,唯一的必须参数
axis 指明连接的轴向,默认0
join 选项包括inner(交集)、outer(并集)
join_axes 指明用于其他(n-1)条轴的索引,不执行并集或交集运算
keys 与连接对象有关的值,用于形成连接轴向上的层次化索引。可以是任意值的列表或数组
levels 指定用作层次化索引各级别上的索引(若设置了keys的话)
names 用于创建分层级别的名称(若设置了keys和levels的话)
verify_integrity 检查结果对象新轴上的重复情况,若发现则异常,默认允许重复(false)
ignore_index 不保留连接轴上的索引,产生一组新索引

合并重叠数据:Series中combine_first方法,dataframe也可以使用

a = Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
           index=[\'f\', \'e\', \'d\', \'c\', \'b\', \'a\'])
b = Series(np.arange(len(a), dtype=np.float64),
           index=[\'f\', \'e\', \'d\', \'c\', \'b\', \'a\'])
#np.where方法
np.where(pd.isnull(a), b, a)
\'\'\'
array([ 0. ,  2.5,  2. ,  3.5,  4.5,  nan])
\'\'\'
#combine_first方法
b[:-2].combine_first(a[2:])
\'\'\'
a    NaN
b    4.5
c    3.0
d    2.0
e    1.0
f    0.0
dtype: float64
\'\'\'

以上是关于数据规整化——合并的主要内容,如果未能解决你的问题,请参考以下文章

pandas数据规整化:清理转换合并重塑之合并数据集

利用Python进行数据分析---数据规整化

利用python进行数据分析之数据规整化

数据规整:聚合合并和重塑 Pandas

数据规整:聚合合并和重塑

pandas小记:pandas数据规整化