BZOJ4555求和(第二类斯特林数,组合数学,NTT)

Posted 小蒟蒻yyb的博客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BZOJ4555求和(第二类斯特林数,组合数学,NTT)相关的知识,希望对你有一定的参考价值。

【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

题面

BZOJ

题解

推推柿子
\[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\]
\[=\sum_{i=0}^n\sum_{j=0}^nS(i,j)·j!·2^j\]
\[=\sum_{i=0}^n\sum_{j=0}^nj!·2^j(\frac{1}{j!}\sum_{k=0}^j(-1)^k·C_j^k·(j-k)^i)\]
\[=\sum_{j=0}^n2^j\sum_{k=0}^j(-1)^k·C_j^k·\sum_{i=0}^n(j-k)^i\]
\[=\sum_{j=0}^n2^j\sum_{k=0}^j(-1)^k·\frac{j!}{k!(j-k)!}·\sum_{i=0}^n(j-k)^i\]
\[=\sum_{j=0}^n2^j·j!\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{\sum_{i=0}^n(j-k)^i}{(j-k)!}\]
上面是一个等比数列求和
\[=\sum_{j=0}^n2^j·j!\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{(j-k)^{n+1}-1}{(j-k)!(j-k-1)}\]
发现后面的东西是一个卷积
可以\(O(nlogn)\)预处理
然后就可以\(O(n)\)算答案了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 998244353
#define MAX 500000
const int pr=3;
const int phi=MOD-1;
int fpow(int a,int b)
{
    int s=1;
    while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
    return s;
}
int r[MAX],N,M,l;
int jc[MAX],inv[MAX];
int a[MAX],b[MAX],S[MAX];
void NTT(int *P,int opt)
{
    for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
    for(int i=1;i<N;i<<=1)
    {
        int W=fpow(pr,phi/(i<<1));
        for(int p=i<<1,j=0;j<N;j+=p)
        {
            int w=1;
            for(int k=0;k<i;++k,w=1ll*w*W%MOD)
            {
                int X=P[j+k],Y=1ll*w*P[i+j+k]%MOD;
                P[j+k]=(X+Y)%MOD;P[i+j+k]=((X-Y)%MOD+MOD)%MOD;
            }
        }
    }
    if(opt==-1)reverse(&P[1],&P[N]);
}
void Work()
{
    M+=N;
    for(N=1;N<=M;N<<=1)++l;
    for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
    NTT(a,1);NTT(b,1);
    for(int i=0;i<N;++i)a[i]=1ll*a[i]*b[i]%MOD;
    NTT(a,-1);
    for(int i=0,inv=fpow(N,MOD-2);i<N;++i)a[i]=1ll*a[i]*inv%MOD;
}
int n,ans;
int main()
{
    scanf("%d",&n);
    N=M=n;
    jc[0]=inv[0]=1;
    for(int i=1;i<=n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
    for(int i=1;i<=n;++i)inv[i]=fpow(jc[i],MOD-2);
    for(int i=0;i<=n;++i)a[i]=(i&1)?-1:1;
    for(int i=0;i<=n;++i)a[i]=(1ll*a[i]*inv[i]%MOD+MOD)%MOD;
    for(int i=2;i<=n;++i)b[i]=(fpow(i,n+1)-1+MOD)%MOD;
    for(int i=2;i<=n;++i)b[i]=1ll*b[i]*inv[i]%MOD;
    for(int i=2;i<=n;++i)b[i]=1ll*b[i]*fpow(i-1,MOD-2)%MOD;
    b[0]=1;b[1]=n+1;
    Work();
    for(int i=0,p=1;i<=n;++i,p=(p+p)%MOD)ans=(ans+1ll*jc[i]*p%MOD*a[i]%MOD)%MOD;
    printf("%d\n",ans);
    return 0;
}

以上是关于BZOJ4555求和(第二类斯特林数,组合数学,NTT)的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ4555 [Tjoi2016&Heoi2016]求和 第二类斯特林数 + NTT

BZOJ4555: [Tjoi2016&Heoi2016]求和

bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化

bzoj4555 [Tjoi2016&Heoi2016]求和

[HEOI2016/TJOI2016][bzoj4555] 求和 [斯特林数+NTT]

[bzoj4555] [Tjoi2016&Heoi2016]求和