利用 Scrapy 爬取知乎用户信息
Posted 希希里之海
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了利用 Scrapy 爬取知乎用户信息相关的知识,希望对你有一定的参考价值。
思路:通过获取知乎某个大V的关注列表和被关注列表,查看该大V和其关注用户和被关注用户的详细信息,然后通过层层递归调用,实现获取关注用户和被关注用户的关注列表和被关注列表,最终实现获取大量用户信息。
一、新建一个scrapy项目
scrapy startproject zhihuuser
移动到新建目录下:
cd zhihuuser
新建spider项目:
scrapy genspider zhihu zhihu.com
二、这里以爬取知乎大V轮子哥的用户信息来实现爬取知乎大量用户信息。
a) 定义 spdier.py 文件(定义爬取网址,爬取规则等):
# -*- coding: utf-8 -*-
import json
from scrapy import Spider, Request
from zhihuuser.items import UserItem
class ZhihuSpider(Spider):
name = \'zhihu\'
allowed_domains = [\'zhihu.com\']
start_urls = [\'http://zhihu.com/\']
#自定义爬取网址
start_user = \'excited-vczh\'
user_url = \'https://www.zhihu.com/api/v4/members/{user}?include={include}\'
user_query = \'allow_message,is_followed,is_following,is_org,is_blocking,employments,answer_count,follower_count,articles_count,gender,badge[?(type=best_answerer)].topics\'
follows_url = \'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}\'
follows_query = \'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics\'
followers_url = \'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}\'
followers_query = \'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics\'
#定义请求爬取用户信息、关注用户和被关注用户的函数
def start_requests(self):
yield Request(self.user_url.format(user=self.start_user, include=self.user_query), callback=self.parseUser)
yield Request(self.follows_url.format(user=self.start_user, include=self.follows_query, offset=0, limit=20), callback=self.parseFollows)
yield Request(self.followers_url.format(user=self.start_user, include=self.followers_query, offset=0, limit=20), callback=self.parseFollowers)
#请求爬取用户详细信息
def parseUser(self, response):
result = json.loads(response.text)
item = UserItem()
for field in item.fields:
if field in result.keys():
item[field] = result.get(field)
yield item
#定义回调函数,爬取关注用户与被关注用户的详细信息,实现层层迭代
yield Request(self.follows_url.format(user=result.get(\'url_token\'), include=self.follows_query, offset=0, limit=20), callback=self.parseFollows)
yield Request(self.followers_url.format(user=result.get(\'url_token\'), include=self.followers_query, offset=0, limit=20), callback=self.parseFollowers)
#爬取关注者列表
def parseFollows(self, response):
results = json.loads(response.text)
if \'data\' in results.keys():
for result in results.get(\'data\'):
yield Request(self.user_url.format(user=result.get(\'url_token\'), include=self.user_query), callback=self.parseUser)
if \'paging\' in results.keys() and results.get(\'paging\').get(\'is_end\') == False:
next_page = results.get(\'paging\').get(\'next\')
yield Request(next_page, callback=self.parseFollows)
#爬取被关注者列表
def parseFollowers(self, response):
results = json.loads(response.text)
if \'data\' in results.keys():
for result in results.get(\'data\'):
yield Request(self.user_url.format(user=result.get(\'url_token\'), include=self.user_query), callback=self.parseUser)
if \'paging\' in results.keys() and results.get(\'paging\').get(\'is_end\') == False:
next_page = results.get(\'paging\').get(\'next\')
yield Request(next_page, callback=self.parseFollowers)
b) 定义 items.py 文件(定义爬取数据的信息,使其规整等):
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html
from scrapy import Field, Item
class UserItem(Item):
# define the fields for your item here like:
# name = scrapy.Field()
allow_message = Field()
answer_count = Field()
articles_count = Field()
avatar_url = Field()
avatar_url_template = Field()
badge = Field()
employments = Field()
follower_count = Field()
gender = Field()
headline = Field()
id = Field()
name = Field()
type = Field()
url = Field()
url_token = Field()
user_type = Field()
c) 定义 pipelines.py 文件(存储数据到MongoDB):
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don\'t forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo
#存储到MongoDB
class MongoPipeline(object):
collection_name = \'users\'
def __init__(self, mongo_uri, mongo_db):
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db
@classmethod
def from_crawler(cls, crawler):
return cls(
mongo_uri=crawler.settings.get(\'MONGO_URI\'),
mongo_db=crawler.settings.get(\'MONGO_DATABASE\')
)
def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo_uri)
self.db = self.client[self.mongo_db]
def close_spider(self, spider):
self.client.close()
def process_item(self, item, spider):
self.db[self.collection_name].update({\'url_token\': item[\'url_token\']}, dict(item), True) #执行去重操作
return item
d) 定义settings.py 文件(开启MongoDB、定义请求头、不遵循 robotstxt 规则):
# -*- coding: utf-8 -*-
BOT_NAME = \'zhihuuser\'
SPIDER_MODULES = [\'zhihuuser.spiders\']
# Obey robots.txt rules
ROBOTSTXT_OBEY = False #是否遵守robotstxt规则,限制爬取内容。
# Override the default request headers(加载请求头):
DEFAULT_REQUEST_HEADERS = {
\'Accept\': \'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\',
\'Accept-Language\': \'en\',
\'User-agent\': \'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36\',
\'authorization\': \'oauth c3cef7c66a1843f8b3a9e6a1e3160e20\'
}
# Configure item pipelines
# See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
\'zhihuuser.pipelines.MongoPipeline\': 300,
}
MONGO_URI = \'localhost\'
MONGO_DATABASE = \'zhihu\'
三、开启爬取:
scrapy crawl zhihu
部分爬取过程中的信息
存储到MongoDB的部分信息:
以上是关于利用 Scrapy 爬取知乎用户信息的主要内容,如果未能解决你的问题,请参考以下文章
运维学python之爬虫高级篇scrapy爬取知乎关注用户存入mongodb
利用Scrapy爬取所有知乎用户详细信息并存至MongoDB