题目描述
Farmer John‘s NNN cows are standing in a row, as they have a tendency to do from time to time. Each cow is labeled with a distinct integer ID number so FJ can tell them apart. FJ would like to take a photo of a contiguous group of cows but, due to a traumatic childhood incident involving the numbers 1…61 \ldots 61…6 , he only wants to take a picture of a group of cows if their IDs add up to a multiple of 7.
Please help FJ determine the size of the largest group he can photograph.
给你n个数,求一个最长的区间,使得区间和能被7整除
输入输出格式
输入格式:
The first line of input contains NNN (1≤N≤50,0001 \leq N \leq 50,0001≤N≤50,000 ). The next NNN
lines each contain the NNN integer IDs of the cows (all are in the range
0…1,000,0000 \ldots 1,000,0000…1,000,000 ).
输出格式:
Please output the number of cows in the largest consecutive group whose IDs sum
to a multiple of 7. If no such group exists, output 0.
输入输出样例
说明
In this example, 5+1+6+2+14 = 28.
同余的性质
(a mod m) + (b mod m) ≡ a + b (mod m)
(a mod m) - (b mod m) ≡ a - b (mod m)
(a mod m) * (b mod m) ≡ a * b (mod m)
给出序列,求出最长的区间,满足区间和为7的倍数
预处理出前缀和
(pre[j] - pre[i ]) mod 7 = 0
=> pre[i] ≡ pre[j] (mod 7)
维护7个值,分别表示模7余0到6的最前d的前缀和
扫一遍过去就行了
1 //2018年2月14日14:15:25 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 using namespace std; 6 7 const int N = 100001; 8 int n, a[N], sum[N], last[N], first[N], ans; 9 10 int main(){ 11 scanf("%d", &n); 12 for(int i=1;i<=n;i++){ 13 scanf("%d", &a[i]); 14 sum[i] = (sum[i-1] + a[i]) % 7; 15 } 16 for(int i=1;i<=n;i++) 17 last[sum[i]] = i; 18 for(int i=n;i>=1;i--) 19 first[sum[i]] = i; 20 for(int i=0;i<7;i++) 21 ans = max(ans, last[i]-first[i]); 22 printf("%d\n", ans); 23 24 return 0; 25 }