『PyTorch』第五弹_深入理解Tensor对象_中上:索引

Posted 叠加态的猫

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了『PyTorch』第五弹_深入理解Tensor对象_中上:索引相关的知识,希望对你有一定的参考价值。

一、普通索引

示例

a = t.Tensor(4,5)
print(a)
print(a[0:1,:2])
print(a[0,:2])  # 注意和前一种索引出来的值相同,shape不同
print(a[[1,2]])  # 容器索引
 3.3845e+15  0.0000e+00  3.3846e+15  0.0000e+00  3.3845e+15
 0.0000e+00  3.3845e+15  0.0000e+00  3.3418e+15  0.0000e+00
 3.3845e+15  0.0000e+00  3.3846e+15  0.0000e+00  0.0000e+00
 0.0000e+00  1.5035e+38  8.5479e-43  1.5134e-43  1.2612e-41
[torch.FloatTensor of size 4x5]


 3.3845e+15  0.0000e+00
[torch.FloatTensor of size 1x2]


 3.3845e+15
 0.0000e+00
[torch.FloatTensor of size 2]


 0.0000e+00  3.3845e+15  0.0000e+00  3.3418e+15  0.0000e+00
 3.3845e+15  0.0000e+00  3.3846e+15  0.0000e+00  0.0000e+00
[torch.FloatTensor of size 2x5]

 

普通索引内存分析

普通索引后的结果和原Tensor的内存共享

print(a[a>1])
import copy
b = copy.deepcopy(a)
a[a>1]=10
print(a,b)
 3.3845e+15
 3.3846e+15
 3.3845e+15
 3.3845e+15
 3.3418e+15
 3.3845e+15
 3.3846e+15
 1.5035e+38
[torch.FloatTensor of size 8]


 10.0000   0.0000  10.0000   0.0000  10.0000
  0.0000  10.0000   0.0000  10.0000   0.0000
 10.0000   0.0000  10.0000   0.0000   0.0000
  0.0000  10.0000   0.0000   0.0000   0.0000
[torch.FloatTensor of size 4x5]
 
 3.3845e+15  0.0000e+00  3.3846e+15  0.0000e+00  3.3845e+15
 0.0000e+00  3.3845e+15  0.0000e+00  3.3418e+15  0.0000e+00
 3.3845e+15  0.0000e+00  3.3846e+15  0.0000e+00  0.0000e+00
 0.0000e+00  1.5035e+38  8.5479e-43  1.5134e-43  1.2612e-41
[torch.FloatTensor of size 4x5]

array([[  1.00000000e+01,   0.00000000e+00,   1.00000000e+01,
          0.00000000e+00,   1.00000000e+01],
       [  0.00000000e+00,   1.00000000e+01,   0.00000000e+00,
          1.00000000e+01,   0.00000000e+00],
       [  1.00000000e+01,   0.00000000e+00,   1.00000000e+01,
          0.00000000e+00,   0.00000000e+00],
       [  0.00000000e+00,   1.00000000e+01,   8.54792063e-43,
          1.51340234e-43,   1.26116862e-41]], dtype=float32)

 

 索引函数gather介绍

方的介绍:
如果input是一个n维的tensor,size为 (x0,x1…,xi?1,xi,xi+1,…,xn?1),dim为i,然后index必须也为n维tensor,size为 (x0,x1,…,xi?1,y,xi+1,…,xn?1),其中y >= 1,最后输出的out与index的size是一样的。
意思就是按照一个指定的轴(维数)收集值
对于一个三维向量来说:

out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k]  # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]]  # if dim == 2

参数:
input (Tensor) – 源tensor
dim (int) – 指定的轴数(维数)
index (LongTensor) – 需要聚集起来的数据的索引
out (Tensor, optional) – 目标tensor

简单来说,就是在Tensor(input)的众多维度中针对某一维度(dim参数),使用一维Tensor(index)进行索引,并对其他维度进行遍历。

 

a = t.arange(16).view(4,4)
index = t.LongTensor([[0,1,2,3]])
print(a)
print(index)
print(a.gather(0,index))

# 逆操作scatter_,注意是inplace的
b = t.zeros(4,4)
b.scatter_(0,index,a.gather(0,index))
print(b)
  0   1   2   3
  4   5   6   7
  8   9  10  11
 12  13  14  15
[torch.FloatTensor of size 4x4]


 0  1  2  3
[torch.LongTensor of size 1x4]


  0   5  10  15
[torch.FloatTensor of size 1x4]


  0   0   0   0
  0   5   0   0
  0   0  10   0
  0   0   0  15
[torch.FloatTensor of size 4x4]

 

二、高阶索引

和普通索引不同,高阶索引前后一般不会共享内存,后面介绍Tensor内存结构时会提到。

x = t.arange(0,27).view(3,3,3)
print(x)
print(x[[1,2],[1,2],[2,0]])  # x[1,1,2]和x[2,2,0]
print(x[[2,1,0],[0],[0]])  # x[2,0,0]和x[1,0,0]和x[0,0,0]
(0 ,.,.) = 
   0   1   2
   3   4   5
   6   7   8

(1 ,.,.) = 
   9  10  11
  12  13  14
  15  16  17

(2 ,.,.) = 
  18  19  20
  21  22  23
  24  25  26
[torch.FloatTensor of size 3x3x3]


 14
 24
[torch.FloatTensor of size 2]


 18
  9
  0
[torch.FloatTensor of size 3]

 

以上是关于『PyTorch』第五弹_深入理解Tensor对象_中上:索引的主要内容,如果未能解决你的问题,请参考以下文章

『PyTorch』第五弹_深入理解Tensor对象_上:初始化以及尺寸调整

『PyTorch』第五弹_深入理解Tensor对象_中下:数学计算以及numpy比较

『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

『PyTorch』第五弹_深入理解autograd_上:Variable

『PyTorch』第五弹_深入理解autograd_下:Variable梯度探究

C语言期末第五弹