二叉排序树 代码

Posted 夜游星

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉排序树 代码相关的知识,希望对你有一定的参考价值。

#include<bits_stdc++.h>

#define max 50

using namespace std;

typedef struct bstnode//BST结构

{

    int data;

    bstnode *lc;

    bstnode *rc;

}bt,*bst;

typedef struct avltnode//AVL

{

    int data;

    int bf;//balance factor

    avltnode *lc;

    avltnode *rc;

}*avltt;

void rightrotate(avltt *p)//right rotate

{

    avltt l=(*p)->lc;//l指向p的左子树

    (*p)->lc=l->rc;//l的右子树挂接为p的左子树

    l->rc=(*p);

    *p=l;

}

void leftrotate(avltt *p)//left rotate

{

    avltt r=(*p)->rc;

    (*p)->rc=r->lc;

    r->lc=(*p);

    *p=r;

}

void leftbalance(avltt *t)//left balance

{

    avltt l,r;

    l=(*t)->lc;

    switch(l->bf)

    {

    case 1:

        (*t)->bf=l->bf=0;

        rightrotate(t);

        break;

    case -1:

        r = l->rc;   //rd指向T的左孩子的右子树的根结点

        switch(r->bf)     //修改T及其左孩子的平衡因子

{          

case 1:

(*t)->bf = -1;

l->bf = 0;

break;

case 0:

(*t)->bf = l->bf = 0;

break;

case -1:

(*t)->bf = 0;

l->bf = 1;

break;

}

r->bf = 0;

leftrotate(&(*t)->lc);

rightrotate(t);

break;

}

}

void rightbalance(avltt *t)//right balance

{

    avltt lc,rd;

lc= (*t)->rc;

switch (lc->bf)

{

case -1:

(*t)->bf = lc->bf = 0;

leftrotate(t);

break;

case 1:

rd = lc->lc;

switch(rd->bf)

{

case 1:

(*t)->bf = 0;

lc->bf = -1;

break;

case 0:

(*t)->bf = lc->bf = 0;

break;

case -1:

(*t)->bf = 0;

lc->bf = 1;

break;

}

rd->bf = 0;

rightrotate(&(*t)->rc);

leftrotate(t);

break;

}

}

int insertavl(avltt *T,int e,bool *taller)//insert AVL

{

    if ((*T)==NULL)

{

(*T)=(avltt)malloc(sizeof(avltnode));

(*T)->bf = 0;

(*T)->data = e;

(*T)->lc = NULL;

(*T)->rc = NULL;

*taller = true;

}

else if (e == (*T)->data)

{

*taller = false;

return 0;

}

else if (e < (*T)->data)

{

if(!insertavl(&(*T)->lc,e,taller))

return 0;

if(*taller)

{

switch ((*T)->bf)

{

case 1:

leftbalance(T);

*taller = false;

break;

case  0:

(*T)->bf = 1;

*taller = true;

break;

case -1:

(*T)->bf = 0;

*taller = false;

break;

}

}

}

else

{

if(!insertavl(&(*T)->rc,e,taller))

return 0;

if (*taller)

{

switch ((*T)->bf)

{

case 1:

(*T)->bf = 0;

*taller = false;

break;

case 0:

(*T)->bf = -1;

*taller = true;

break;

case  -1:

rightbalance(T);

*taller = false;

break;

}

}

}

return 1;

}

int searcht(bst t,int k)//search BST

{

    if(!t)

    {

      cout<<"false"<<endl;

        //*p=f;

      return 0;

    }

    else if(k==t->data)

    {

      cout<<"find"<<endl;

        //*p=t;

        return 1;

    }

    else if(k<t->data)

        searcht(t->lc,k);

    else

        searcht(t->rc,k);

}

int search2(bst t,bst f,int k,bst *p)

{

    if(!t)

    {

        *p=f;return 0;

    }

    else if (k==t->data)

    {

        *p=t;

        return 1;

    }

    else if(k<t->data)

    {

        return search2(t->lc,t,k,p);

    }

    else

    {

        return search2(t->rc,t,k,p);

    }

}

void insertt(bst *t,int k)//insert BST

{

    bst p,s;

    if(!search2(*t,NULL,k,&p))//can‘t find

    {

        s=(bst)malloc(sizeof(bstnode));

        s->data=k;

        s->lc=s->rc=NULL;

        if(!p)

            *t=s;

        else if(k<p->data)

            p->lc=s;

        else

            p->rc=s;

    }

    else

        cout<<k<<"已存在"<<endl;

}

void deletee(bst *p)//删除、重接

{

    bst q,s;

    if((*p)->rc==NULL)

    {

        q=(*p);(*p)=(*p)->lc;

        free(q);

    }

    else if((*p)->lc==NULL)

    {

        q=*p;*p=(*p)->rc;

        free(q);

    }

    else

    {

        q=*p;s=(*p)->lc;

        while(s->rc)

        {

            q=s;

            s=s->rc;

        }

        (*p)->data=s->data;

        if(q!=*p)

            q->rc=s->lc;

        else

            q->lc=s->lc;

        free(s);

    }

}

void deletet(bst *t,int k)//delete BST

{

    if(k==(*t)->data)

        deletee(t);

    else if(k<(*t)->data)

        deletet(&(*t)->lc,k);

    else

        deletet(&(*t)->rc,k);

}

void displaybst(bst t)//pre-order BST

{

    if(t)

    {

         cout<<t->data<<" ";

         displaybst(t->lc);

         displaybst(t->rc);

    }

}

void displayavlt(avltt t)//pre-order AVL

{

    if(t)

    {

        cout<<t->data<<" ";

        displayavlt(t->lc);

        displayavlt(t->rc);

    }

}

int main ()

{

   int i,c=0;

   int a[max];

   bst t=NULL,p;

   avltt avlt=NULL;

   bool taller;

   cout<<"产生随机数为:"<<endl;

   for(i=0;i<max;i++)

   {

      a[i]=(rand()%100);

      cout<<a[i]<<" ";

      if((i+1)%10==0)cout<<endl;

   }

   for(i=0;i<max;i++)//build BST

        insertt(&t,a[i]);

   cout<<"binary sort tree:"<<endl;

   displaybst(t);

   for(i=0;i<max;i++)//build AVL tree

        insertavl(&avlt,a[i],&taller);

   cout<<endl<<"AVL tree:"<<endl;

   displayavlt(avlt);

   int k;

   for(c;c!=4;)

    {

        cout<<endl<<"请选择BST操作(1:search,2:insert,3:delete,4:qiut)"<<endl;

       cin>>c;

       if(c==4)break;

       switch(c)

       {

        case 1:

            cout<<"请输入查找值:"<<endl;cin>>k;searcht(t,k);break;

        case 2:

            cout<<"请输入插入值:"<<endl;cin>>k;insertt(&t,k);

        cout<<"插入后为:"<<endl;displaybst(t);break;

        case 3:

            cout<<"请输入删除值:"<<endl;cin>>k;deletet(&t,k);

        cout<<"删除后为:"<<endl;displaybst(t);break;

       }

    }

   return 0;

}

以上是关于二叉排序树 代码的主要内容,如果未能解决你的问题,请参考以下文章

数据结构 动态查找与二叉排序树

数据结构课程设计,二叉排序树。

数据结构与算法:树 二叉排序树(BST)

java二叉排序树

数据结构与算法:树 二叉排序树(BST)

二叉排序树的创建和遍历排序