概率论高速学习04:概率公理 全概率 贝叶斯 事件独立性
Posted llguanli
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了概率论高速学习04:概率公理 全概率 贝叶斯 事件独立性相关的知识,希望对你有一定的参考价值。
概率论高速学习04:概率公理 全概率 贝叶斯 事件独立性
原创地址: http://www.cnblogs.com/Alandre/ (泥沙砖瓦浆木匠),须要转载的,保留下! Thanks
加油! 大牛总是不断努力,你却更须要加倍努力.
Written In The Font
数学和生活是技术之本, 有了数学,加上生活,才会开心.
今天继续概率论:
- 全概率
- 贝叶斯
- 事件独立性
Content
The total probability
The law of total probability is the proposition that if is a finite or countably infinitepartition of a sample space (in other words, a set of pairwise disjoint events whose union is the entire sample space) and each event is measurable, then for any event of the same probability space:
example:
例. 甲、乙两家工厂生产某型号车床,当中次品率分别为20%, 5%。已知每月甲厂生产的数量是乙厂的两倍,现从一个月的产品中随意抽检一件,求该件产品为合格的概率?
设A表示产品合格,B表示产品来自甲厂
Bayes
for some partition {Bj} of the event space, the event space is given or conceptualized in terms of P(Bj) and P(A|Bj). It is then useful to compute P(A) using the law of total probability:
example:
An entomologist spots what might be a rare subspecies of beetle, due to the pattern on its back. In the rare subspecies, 98% have the pattern, or P(Pattern|Rare) = 98%. In the common subspecies, 5% have the pattern. The rare subspecies accounts for only 0.1% of the population. How likely is the beetle having the pattern to be rare, or what is P(Rare|Pattern)?
From the extended form of Bayes\' theorem (since any beetle can be only rare or common),
One more example:
Independence
Two events
Two events A and B are independent if and only if their joint probability equals the product of their probabilities:
- .
Why this defines independence is made clear by rewriting with conditional probabilities:
how about Three events
sometimes , we will see the Opposition that can be used to make the mess done. We will use the rule of independence such as :
Editor\'s Note
“学吧,至少不亏.”一句良言 终身受用.
以上是关于概率论高速学习04:概率公理 全概率 贝叶斯 事件独立性的主要内容,如果未能解决你的问题,请参考以下文章
人工智能数学基础--概率与统计1:随机试验样本空间事件概率公理定理以及条件概率和贝叶斯法则