sklearn各种分类器简单使用

Posted cn_XuYang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn各种分类器简单使用相关的知识,希望对你有一定的参考价值。

sklearn中有很多经典分类器,使用非常简单:1.导入数据 2.导入模型 3.fit--->predict

下面的示例为在iris数据集上用各种分类器进行分类:

 1 #用各种方式在iris数据集上数据分类
 2 
 3 #载入iris数据集,其中每个特征向量有四个维度,有三种类别
 4 from sklearn import datasets
 5 iris = datasets.load_iris()
 6 print ("The iris‘ target names: ",iris.target_names)
 7 x = iris.data
 8 y = iris.target
 9 
10 #待分类的两个样本
11 test_vector = [[1,-1,2.6,-2],[0,0,7,0.8]]
12 
13 #线性回归
14 from sklearn import linear_model
15 linear = linear_model.LinearRegression()
16 linear.fit(x,y)
17 print ("linear‘s score: ",linear.score(x,y))
18 print ("w:",linear.coef_)       
19 print ("b:",linear.intercept_)  
20 print ("predict: ",linear.predict(test_vector))
21 
22 #逻辑回归
23 LR = linear_model.LogisticRegression()
24 LR.fit(x,y)
25 print ("LogisticRegression:",LR.predict(test_vector))
26 
27 #决策树
28 from sklearn import tree
29 TR = tree.DecisionTreeClassifier(criterion=entropy)   
30 TR.fit(x,y)
31 print ("DecisionTree:",TR.predict(test_vector))
32 
33 #支持向量机
34 from sklearn import svm
35 SV = svm.SVC()
36 SV.fit(x,y)
37 print ("svm:",SV.predict(test_vector))
38 
39 #朴素贝叶斯
40 from sklearn import naive_bayes
41 NB = naive_bayes.GaussianNB()
42 NB.fit(x,y)
43 print ("naive_bayes:",NB.predict(test_vector))
44 
45 #K近邻
46 from sklearn import neighbors
47 KNN = neighbors.KNeighborsClassifier(n_neighbors = 3)
48 KNN.fit(x,y)
49 print ("KNeighbors:",KNN.predict(test_vector))
50 ‘‘‘
51 he iris‘ target names:  [‘setosa‘ ‘versicolor‘ ‘virginica‘]
52 linear‘s score:  0.930422367533
53 w: [-0.10974146 -0.04424045  0.22700138  0.60989412]
54 b: 0.192083994828
55 predict:  [-0.50300167  2.26900897]
56 LogisticRegression: [1 2]
57 DecisionTree: [1 2]
58 svm: [2 2]
59 naive_bayes: [2 2]
60 KNeighbors: [0 1]
61 ‘‘‘

 

以上是关于sklearn各种分类器简单使用的主要内容,如果未能解决你的问题,请参考以下文章

算法 | 使用sklearn自带的贝叶斯分类器进行文本分类和参数调优

如何检查sklearn模型是分类器还是回归器

使用sklearn自带的贝叶斯分类器进行文本分类和参数调优

再论sklearn分类器

使用具有不同分类器的 sklearn precision_recall_curve 函数

使用 sklearn 的决策树分类器 100% 准确率