经典二分图匹配问题。把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配。方案直接顺着匹配dsf。。
#include<iostream>
#include<cstdio>
using namespace std;
const int N=505,M=120005;
int n,m,h[N],cnt,lk[N],t,v[N],ans;
struct qwe
{
int ne,to;
}e[M];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>‘9‘||p<‘0‘)
{
if(p==‘-‘)
f=-1;
p=getchar();
}
while(p>=‘0‘&&p<=‘9‘)
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
bool findd(int u)
{
for(int i=h[u];i;i=e[i].ne)
if(v[e[i].to]!=t)
{
v[e[i].to]=t;
if(!lk[e[i].to]||findd(lk[e[i].to]))
{
lk[e[i].to]=u;
lk[u]=e[i].to;
return 1;
}
}
return 0;
}
void prin(int u)
{
u+=n;
do
printf("%d ",u=u-n);
while(v[u]=t,u=lk[u]);
puts("");
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read();
add(x,y+n);
}
for(int i=1;i<=n;i++)
if(!lk[i])
{
t++;
if(findd(i))
ans++;
}
t++;
for(int i=1;i<=n;i++)
if(v[i]!=t)
prin(i);
printf("%d\n",n-ans);
return 0;
}