就是求哪些边在最大流上满流,也就是找割边。把0作为t点,s向所有的1~n连流量为inf的边,其他的边按照流量连。跑一遍最大流,从s顺着有残余流量的正向边dfs打标记fr,从t顺着正向边有残余流量的反向边dfs打标记to,那么满足条件的边就是两端点分别有fr和to标记并且满流(这里只考虑正向边),因为这意味着在这条边上增加流量就可以再流一条增广路。
注意一下输出格式,行末不能有空格。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=205,inf=1e9,L=2005;
int n,m,l,h[N],cnt=1,le[N],s,t,ans[L];
bool fr[L],to[L];
struct qwe
{
int ne,no,to,v;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>‘9‘||p<‘0‘)
{
if(p==‘-‘)
f=-1;
p=getchar();
}
while(p>=‘0‘&&p<=‘9‘)
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].v=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].v>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(le[e[i].to]==le[u]+1&&e[i].v>0)
{
int d=dfs(e[i].to,min(e[i].v,f-us));
e[i].v-=d;
e[i^1].v+=d;
us+=d;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
void dfs1(int u)
{
fr[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!fr[e[i].to]&&e[i].v!=0)
dfs1(e[i].to);
}
void dfs2(int u)
{
to[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!to[e[i].to]&&e[i^1].v!=0)
dfs2(e[i].to);
}
int main()
{
while(1)
{
n=read(),m=read(),l=read();
if(n==0)
break;
s=n+m+1,t=0;
memset(fr,0,sizeof(fr));
memset(to,0,sizeof(to));
memset(h,0,sizeof(h));
cnt=1;ans[0]=0;
for(int i=1;i<=l;i++)
{
int x=read(),y=read(),z=read();
ins(x,y,z);
}
for(int i=1;i<=n;i++)
ins(s,i,inf);
dinic();
dfs1(s);
dfs2(t);
for(int i=1;i<=l;i++)
if(fr[e[i<<1].no]&&to[e[i<<1].to]&&e[i<<1].v==0)
ans[++ans[0]]=i;
if(ans[0])
{
printf("%d",ans[1]);;
for(int i=2;i<=ans[0];i++)
printf(" %d",ans[i]);
}
printf("\n");
}
return 0;
}