TF之BN:BN算法对多层中的每层神经网络加快学习QuadraticFunction_InputData+Histogram+BN的Error_curve
Posted 一个处女座的IT
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TF之BN:BN算法对多层中的每层神经网络加快学习QuadraticFunction_InputData+Histogram+BN的Error_curve相关的知识,希望对你有一定的参考价值。
# 23 Batch Normalization import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ACTIVATION = tf.nn.tanh N_LAYERS = 7 N_HIDDEN_UNITS = 30 def fix_seed(seed=1): # reproducible np.random.seed(seed) tf.set_random_seed(seed) def plot_his(inputs, inputs_norm): # plot histogram for the inputs of every layer for j, all_inputs in enumerate([inputs, inputs_norm]): for i, input in enumerate(all_inputs): plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1)) plt.cla() if i == 0: the_range = (-7, 10) else: the_range = (-1, 1) plt.hist(input.ravel(), bins=15, range=the_range, color=\'#0000FF\') plt.yticks(()) if j == 1: plt.xticks(the_range) else: plt.xticks(()) ax = plt.gca() ax.spines[\'right\'].set_color(\'none\') ax.spines[\'top\'].set_color(\'none\') plt.title("%s normalizing" % ("Without" if j == 0 else "With")) plt.title(\'Matplotlib,BN,histogram--Jason Niu\') plt.draw() plt.pause(0.001) def built_net(xs, ys, norm): def add_layer(inputs, in_size, out_size, activation_function=None, norm=False): # weights and biases (bad initialization for this case) Weights = tf.Variable(tf.random_normal([in_size, out_size], mean=0., stddev=1.)) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) # fully connected product Wx_plus_b = tf.matmul(inputs, Weights) + biases # normalize fully connected product if norm: # Batch Normalize fc_mean, fc_var = tf.nn.moments( Wx_plus_b, axes=[0], ) scale = tf.Variable(tf.ones([out_size])) shift = tf.Variable(tf.zeros([out_size])) epsilon = 0.001 # apply moving average for mean and var when train on batch ema = tf.train.ExponentialMovingAverage(decay=0.5) def mean_var_with_update(): ema_apply_op = ema.apply([fc_mean, fc_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(fc_mean), tf.identity(fc_var) mean, var = mean_var_with_update() Wx_plus_b = tf.nn.batch_normalization(Wx_plus_b, mean, var, shift, scale, epsilon) # Wx_plus_b = (Wx_plus_b - fc_mean) / tf.sqrt(fc_var + 0.001) #进行BN一下 # Wx_plus_b = Wx_plus_b * scale + shift # activation if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs #输出激活结果 fix_seed(1) if norm: # BN for the first input fc_mean, fc_var = tf.nn.moments( xs, axes=[0], ) scale = tf.Variable(tf.ones([1])) shift = tf.Variable(tf.zeros([1])) epsilon = 0.001 # apply moving average for mean and var when train on batch ema = tf.train.ExponentialMovingAverage(decay=0.5) def mean_var_with_update(): ema_apply_op = ema.apply([fc_mean, fc_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(fc_mean), tf.identity(fc_var) mean, var = mean_var_with_update() xs = tf.nn.batch_normalization(xs, mean, var, shift, scale, epsilon) # record inputs for every layer layers_inputs = [xs] # build hidden layers for l_n in range(N_LAYERS): layer_input = layers_inputs[l_n] in_size = layers_inputs[l_n].get_shape()[1].value output = add_layer( layer_input, # input in_size, # input size N_HIDDEN_UNITS, # output size ACTIVATION, # activation function norm, # normalize before activation ) layers_inputs.append(output) # build output layer prediction = add_layer(layers_inputs[-1], 30, 1, activation_function=None) cost = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) train_op = tf.train.GradientDescentOptimizer(0.001).minimize(cost) return [train_op, cost, layers_inputs] fix_seed(1) x_data = np.linspace(-7, 10, 2500)[:, np.newaxis] #水平轴-7~10 np.random.shuffle(x_data) noise = np.random.normal(0, 8, x_data.shape) y_data = np.square(x_data) - 5 + noise xs = tf.placeholder(tf.float32, [None, 1]) # [num_samples, num_features] ys = tf.placeholder(tf.float32, [None, 1]) #建立两个神经网络作对比 train_op, cost, layers_inputs = built_net(xs, ys, norm=False) train_op_norm, cost_norm, layers_inputs_norm = built_net(xs, ys, norm=True) sess = tf.Session() if int((tf.__version__).split(\'.\')[1]) < 12 and int((tf.__version__).split(\'.\')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() sess.run(init) # record cost cost_his = [] cost_his_norm = [] record_step = 5 plt.ion() plt.figure(figsize=(7, 3)) for i in range(250): if i % 50 == 0: # plot histogram all_inputs, all_inputs_norm = sess.run([layers_inputs, layers_inputs_norm], feed_dict={xs: x_data, ys: y_data}) plot_his(all_inputs, all_inputs_norm) # train on batch每一步都run一下 sess.run([train_op, train_op_norm], feed_dict={xs: x_data[i*10:i*10+10], ys: y_data[i*10:i*10+10]}) if i % record_step == 0: # record cost cost_his.append(sess.run(cost, feed_dict={xs: x_data, ys: y_data})) cost_his_norm.append(sess.run(cost_norm, feed_dict={xs: x_data, ys: y_data})) #以下是绘制误差值Cost误差曲线的方法 plt.ioff() plt.figure() plt.title(\'Matplotlib,BN,Error_curve--Jason Niu\') plt.plot(np.arange(len(cost_his))*record_step, np.array(cost_his), label=\'no BN\') # no norm plt.plot(np.arange(len(cost_his))*record_step, np.array(cost_his_norm), label=\'BN\') # norm plt.legend() plt.show()
以上是关于TF之BN:BN算法对多层中的每层神经网络加快学习QuadraticFunction_InputData+Histogram+BN的Error_curve的主要内容,如果未能解决你的问题,请参考以下文章