用来算两组数的差别大小
只要是一种叫做p-value的
就是说假如你测定一个实验的p-value是5%
也就是说你有95%的信心确定这个实验它是正确的
在正规的实验里 只有当p-value小于5%的时候这个实验才算是可以在报告中提及
数值越小代表实验数据越精确 可信度越高
T检验,亦称student t检验(Student‘s t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。
T检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。戈特特于1908年在Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。
T检验的适用条件:正态分布资料
T检验的步骤
1、建立虚无假设H0:μ1 = μ2,即先假定两个总体平均数之间没有显著差异;
2、计算统计量T值,对于不同类型的问题选用不同的统计量计算方法;
1)如果要评断一个总体中的小样本平均数与总体平均值之间的差异程度,其统计量T值的计算公式为:
2)如果要评断两组样本平均数之间的差异程度,其统计量T值的计算公式为:
3、根据自由度df=n-1,查T值表,找出规定的T理论值并进行比较。理论值差异的显著水平为0.01级或0.05级。不同自由度的显著水平理论值记为T(df)0.01和T(df)0.05 这个就是我说的那个p-value= =
4、比较计算得到的t值和理论T值,推断发生的概率,依据下表给出的T值与差异显著性关系表作出判断。
t检验分为单总体检验和双总体检验
单总体t检验
单个样本的t检验实例分析
例1 难产儿出生体重
一般婴儿出生体重μ0 = 3.30(大规模调查获得),问相同否?
解:1.建立假设、确定检验水准α
H0:μ = μ0 (难产儿与一般婴儿出生体重的总均数相等;H0无效假设,null hypothesis)
(难产儿与一般婴儿出生体重的总均数不等;H1备择假设,alternative hypothesis,)
双侧检验,检验水准:α = 0.05
2.计算检验统计量
3.查相应界值表,确定P值,下结论
查附表1: t0.05 / 2.34 = 2.032,t = 1.77,t < t0.05 / 2.34,P > 0.05,按α = 0.05水准,不拒绝H0,两者的差别无统计学意义,尚不能认为难产儿平均出生体重与一般婴儿的出生体重不同