# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable。Tensorflow当中有两种途径生成变量 variable import tensorflow as tf #T1法 tf.name_scope() with tf.name_scope("a_name_scope"): initializer = tf.constant_initializer(value=1) #定义常量 var1 = tf.get_variable(name=‘var1‘, shape=[1], dtype=tf.float32, initializer=initializer) #创建变量 var2 = tf.Variable(name=‘var2‘, initial_value=[2], dtype=tf.float32) var21 = tf.Variable(name=‘var2‘, initial_value=[2.1], dtype=tf.float32) var22 = tf.Variable(name=‘var2‘, initial_value=[2.2], dtype=tf.float32) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) #以下打印出每一种Variable的名字及其值 print(var1.name) # var1:0 print(sess.run(var1)) # [ 1.] print(var2.name) # a_name_scope/var2:0 print(sess.run(var2)) # [ 2.] print(var21.name) # a_name_scope/var2_1:0 print(sess.run(var21)) # [ 2.0999999] print(var22.name) # a_name_scope/var2_2:0 print(sess.run(var22)) # [ 2.20000005] #使用 tf.Variable()定义的时候, 虽然 name都一样, 但是为了不重复变量名, Tensorflow输出的变量名并不是一样的. #所以, 本质上 var2, var21, var22 并不是一样的变量. #而另一方面, 使用tf.get_variable()定义的变量不会被tf.name_scope()当中的名字所影响. print(‘以下输出的是T2第二种方法‘) #T2法 tf.variable_scope() #如果想要达到重复利用变量的效果, 我们就要使用 tf.variable_scope(), 并搭配 tf.get_variable() 这种方式产生和提取变量. #不像 tf.Variable() 每次都会产生新的变量, tf.get_variable() 如果遇到了同样名字的变量时, #它会单纯的提取这个同样名字的变量(避免产生新变量). 而在重复使用的时候, 一定要在代码中强调 scope.reuse_variables(), #否则系统将会报错, 以为你只是单纯的不小心重复使用到了一个变量. with tf.variable_scope("a_variable_scope") as scope: initializer = tf.constant_initializer(value=3) var3 = tf.get_variable(name=‘var3‘, shape=[1], dtype=tf.float32, initializer=initializer) scope.reuse_variables() var3_reuse = tf.get_variable(name=‘var3‘,) var4 = tf.Variable(name=‘var4‘, initial_value=[4], dtype=tf.float32) var4_reuse = tf.Variable(name=‘var4‘, initial_value=[4], dtype=tf.float32) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(var3.name) # a_variable_scope/var3:0 print(sess.run(var3)) # [ 3.] print(var3_reuse.name) # a_variable_scope/var3:0 print(sess.run(var3_reuse)) # [ 3.] print(var4.name) # a_variable_scope/var4:0 print(sess.run(var4)) # [ 4.] print(var4_reuse.name) # a_variable_scope/var4_1:0 print(sess.run(var4_reuse)) # [ 4.]