吴恩达“机器学习”——学习笔记五

Posted 辛侠平

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了吴恩达“机器学习”——学习笔记五相关的知识,希望对你有一定的参考价值。

朴素贝叶斯算法(Naive Bayes)(续学习笔记四)

两个朴素贝叶斯的变化版本

x_i可以取多个值,即p(x_i|y)是符合多项式分布的,不是符合伯努利分布的。其他的与符合伯努利的情况一样。(同时也提供一种思路将连续型变量变成离散型的,比如说房间的面积可以进行离散分类,然后运用这个朴素贝叶斯算法的变形)。

第二个朴素贝叶斯的变化形式专门用来处理文本文档,即对序列进行分类,被称为朴素贝叶斯的事件模型(event model)。这将使用一种不同的方式将邮件转化为特征向量。

之前的特征向量是:向量维度是字典的大小,此向量将会把邮件中出现的单词在字典中标记为1,未出现的单词标记为0。

现在将特征向量进行变化:向量维度是邮件的长度,向量中的每一个元素对应用邮件中的对应位置的单词。加入邮件是‘a nips’。假如a在字典中的位置是第一位,nips在字典中的位置是3500位。那么x_0=1,x_1=3500。对应的生成模型就变成了,n代表邮件单词的数量,xi服从多项式分布。对应的参数为φy = p(y),φi|y=1 = p(x_ j = i|y = 1) (for any j),φi|y=0 = p(x_ j = i|y = 0)。给出训练集合,可以求得参数的最大似然估计:

根据laplace平滑,可以得到,

神经网络(neural network)

可以生成非线性分类器。(生成学习算法中的高斯判别和朴素贝叶斯都是和logistics函数相关的线性分类器)

将特征先传递到中间层的sigmoid单元,在将中间层的sigmoid单元传递到输出层的sigmoid单元中。

对应的函数以及成本可以写成:

 

在神经网络中使用梯度下降算法,称为反向传播。

支持向量机(support vector machine)

另外一种可以生成非线性分类器的算法。

先进行线性分类器的说明。

考虑logistics回归,使用的是sigmoid函数,h>0.5时,我们就认为y为1,或者说,theta^T(x)>0时,我们就认为y为1。所以,如果theta^T(x)远大于0,我们就可以坚信y=1,如果theta^T(x)远小于0,我们就可以坚信y=0。这可以从sigmo图像中很容易得到。可以根据theta^T(x)=0,来找出一条边界线,距离这条边界线越远,我们就对它的预测值更有信心,离这条线越近,我们对它的预测值的信心就会减少。

在SVM中,改变了一些约束:y的取值变成了-1和1,不再是0与1了;预测值的参数也变成了w和b了g也不再是sigmoid函数了,而是g(z) = 1 if z ≥ 0, and g(z) = −1 otherwise。

w^Tx+b与之前的θ^Tx本质上是一样的,只不过之前假设的是x_0等于1。w=[θ1 . . . θn] ^T,b=θ0。

函数间隔

给定训练样本,我们定义函数间隔为

如果y^(i)=1,为了让预测更加正确,应该要求w^Tx+b为一个很大的正数,如果y^(i)=-1,我们应该要求w^Tx+b为一个很小的负数。我们认为y^ (i) (w T x + b) > 0,那么我们的预测就是正确的。

如果有多个训练样本,就定义

即离分界线最近的一种情况,即最坏的情况。现在就转化为在最坏的情况下,使得函数间隔最大。但是,如果使得w和b同时加倍,此时的边界线不变,但是函数间隔会随着w和b的加倍而加倍,但是这种大的函数间隔是没什么用的。所以可以进行正规化处理解决这个问题。

几何间隔

A(x^(i),y^(i)),w是分界线的法向量,gamma是A与B之间的距离。那么B点就有同时B点存在所以可以得到更一般的,我们可以写成所以,几何间距是一个化归处理的函数间距。当有多个样本时,我们也定义

最大间隔分类器

SVM的前身

即选择gamma,w,b使得几何间隔最大(在满足 y (i) (w T x (i) + b) ≥ γ, i = 1, . . . , m ||w|| = 1.的条件下)。

以上是关于吴恩达“机器学习”——学习笔记五的主要内容,如果未能解决你的问题,请参考以下文章

下载量过百万的吴恩达机器学习和深度学习笔记更新了!(附PDF下载)

吴恩达机器学习课程笔记:多元梯度下降法

吴恩达《机器学习系列课程》学习笔记

吴恩达机器学习学习笔记——代价函数

吴恩达“机器学习”——学习笔记二

吴恩达《机器学习系列课程》学习笔记:监督学习