NAACL 2013 Paper Mining User Relations from Online Discussions using Sentiment Analysis and PMF(示例代码

Posted zhchoutai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NAACL 2013 Paper Mining User Relations from Online Discussions using Sentiment Analysis and PMF(示例代码相关的知识,希望对你有一定的参考价值。

中文简单介绍:本文对怎样基于情感分析和概率矩阵分解从网络论坛讨论中挖掘用户关系进行了深入研究。

论文出处:NAACL‘13.

英文摘要: Advances in sentiment analysis have enabled extraction of user relations implied in online textual exchanges such as forum posts. However,recent studies in this direction only consider direct relation extraction from text. As user interactions can be sparse in online discussions,we propose to apply collaborative filtering through probabilistic matrix factorization to generalize and improve the opinion matrices extracted from forum posts. Experiments with two tasks show that the learned latent factor representation can give good performance on a relation polarity prediction task and improve the performance of a subgroup detection task.

下载链接:http://aclweb.org/anthology/N/N13/N13-1041.pdf

开源Code链接:https://github.com/yangliuy/NLPForumPostOTE

Data链接:https://github.com/yangliuy/Debate-DataSets_NAACL13

以上是关于NAACL 2013 Paper Mining User Relations from Online Discussions using Sentiment Analysis and PMF(示例代码的主要内容,如果未能解决你的问题,请参考以下文章

14days laravel

NAACL 2019自然语言处理亮点

大会 | 自然语言处理顶会NAACL 2018最佳论文时间检验论文揭晓

论文速递NAACL2022- 文档级事件论元抽取的双流AMR增强模型

文本匹配——NAACL 2021AugSBERT

自然语言处理顶级会议ACL,EMNLP,NAACL, COLING论文质量有区别吗?