GraphX学习笔记——可视化
Posted tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GraphX学习笔记——可视化相关的知识,希望对你有一定的参考价值。
首先自己造了一份简单的社交关系的图
第一份是人物数据,id和姓名,person.txt
1 孙俪 2 邓超 3 佟大为 4 冯绍峰 5 黄晓明 6 angelababy 7 李冰冰 8 范冰冰
第二份是社交关系数据,两个人的id和社交关系,social.txt
1 丈夫 2 2 妻子 1 1 搭档 3 3 同学 4 3 好友 5 5 好友 3 5 妻子 6 5 好友 7 7 好友 8
使用SparkX和GraphStream来处理数据
package graphx import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD import org.graphstream.graph.implementations.{AbstractEdge, SingleGraph, SingleNode} /** * Created by common on 18-1-22. */ object GraphxLearning { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("GraphX").setMaster("local") val sc = new SparkContext(conf) val path1 = "input/graphx/person.txt" val path2 = "input/graphx/social.txt" // 顶点RDD[顶点的id,顶点的属性值] val users: RDD[(VertexId, (String, String))] = sc.textFile(path1).map { line => val vertexId = line.split(" ")(0).toLong val vertexName = line.split(" ")(1) (vertexId, (vertexName, vertexName)) } // 边RDD[起始点id,终点id,边的属性(边的标注,边的权重等)] val relationships: RDD[Edge[String]] = sc.textFile(path2).map { line => val arr = line.split(" ") val edge = Edge(arr(0).toLong, arr(2).toLong, arr(1)) edge } // 默认(缺失)用户 //Define a default user in case there are relationship with missing user val defaultUser = ("John Doe", "Missing") //使用RDDs建立一个Graph(有许多建立Graph的数据来源和方法,后面会详细介绍) val srcGraph = Graph(users, relationships, defaultUser) val graph: SingleGraph = new SingleGraph("graphDemo") // load the graphx vertices into GraphStream for ((id, name) <- srcGraph.vertices.collect()) { val node = graph.addNode(id.toString).asInstanceOf[SingleNode] node.addAttribute("ui.label", name._1) } // load the graphx edges into GraphStream edges for (Edge(x, y, relation) <- srcGraph.edges.collect()) { val edge = graph.addEdge(x.toString ++ y.toString, x.toString, y.toString, true).asInstanceOf[AbstractEdge] edge.addAttribute("ui.label", relation) } graph.setAttribute("ui.quality") graph.setAttribute("ui.antialias") graph.display() } }
可视化的结果,该图数据节点数很少,本来想尝试一份百万节点的数据,结果遇到了爆内存的问题
后来发现爆内存是肯定的,而且显示的点太多也不太利于debug,解决方法是使用subgraph()方法来对图进行裁剪以减小节点和边的数量
以上是关于GraphX学习笔记——可视化的主要内容,如果未能解决你的问题,请参考以下文章
大数据技术之_19_Spark学习_05_Spark GraphX 应用解析 + Spark GraphX 概述解析 + 计算模式 + Pregel API + 图算法参考代码 + PageRank(