Virtual DOM的简单实现

Posted _Liu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Virtual DOM的简单实现相关的知识,希望对你有一定的参考价值。

了解React的同学都知道,React提供了一个高效的视图更新机制:Virtual DOM,因为DOM天生就慢,所以操作DOM的时候要小心翼翼,稍微改动就会触发重绘重排,大量消耗性能。

1.Virtual DOM


Virtual DOM是利用JS的原生对象来模拟DOM,既然DOM是对象,我们也可以用原生的对象来表示DOM。

var element = {
  tagName: \'ul\', // 节点标签名
  props: {
    class: \'list\' // 节点的属性,ID,class...
  },
  children: [ // 该节点的子节点
    {tagName: \'li\', props: {class: \'item\'}, children: [\'item one\']},
    {tagName: \'li\', props: {class: \'item\'}, children: [\'item two\']},
    {tagName: \'li\', props: {class: \'item\'}, children: [\'item three\']}
  ]
}

对应成相应的html结构为:

<ul class="list">
    <li class="item">item one</li>
    <li class="item">item two</li>
    <li class="item">item three</li>
</ul>

但是这又有什么用呢?不还是要操作DOM吗?

开头我们就说过,Virtual DOM是一个高效的视图更新机制,没错,主要在更新。怎么更新呢,那就要用到了我们之前用JS对象模拟的DOM树了,就叫它对象树把,我们对比前后两棵对象树,比较出需要更新视图的地方,对需要更新视图的地方才进行DOM操作,不需要更新的地方自然什么都不做,这就避免了性能的不必要浪费,变相的提升了性能。

总之Virtual DOM算法主要包括这几步:

  • 初始化视图的时候,用原生JS对象表示DOM树,生成一个对象树,然后根据这个对象树来生成一个真正的DOM树,插入到文档中。

  • 当状态更新的时候,重新生成一个对象树,将新旧两个对象树做对比,记录差异。

  • 把记录的差异应用到第一步生成的真正的DOM树上,视图跟新完成

其实就是一个双缓冲的原理,既然CPU这么快,读取硬盘又这么慢,我们就在中间加一个Cache。那么,既然DOM操作也慢,我们们就可以在JS和DOM之间也加一个Cache,这个Cache就是我们的Virtual DOM了。

其实说白了Virtual DOM的原理就是只更新需要更新的地方,其他的一概不管。

2.用对象树表示DOM树


用JS对象表示DOM节点还是比较容易的,我们这需要记录DOM节点的节点类型、属性、还有子节点就好了。

class objectTree {
  constructor (tagName, props, children) {
    this.tagName = tagName
    this.props = props
    this.children = children
  }
}

我们可以通过这种方式创建一个对象树:

var ul = new objectTree(\'ul\', {id: \'list\'}, [
  createObjectTree(\'li\', {class: \'item\'}, [\'Item 1\']),
  createObjectTree(\'li\', {class: \'item\'}, [\'Item 2\']),
  createObjectTree(\'li\', {class: \'item\'}, [\'Item 3\'])
])

对象树存在一个render方法来将对象树转换成真正的DOM树:

objectTree.prototype.render = function () {
  var elm = document.createElement(this.tagName)

  var props = this.props
  // 设置DOM节点的属性
  for (var key in props) {
    elm.setAttribute(key, props[key])
  }

  var children = this.children || []
  children.forEach((child) => {
    // 如果子节点也是对象树,则递归渲染,否则就是文本节点
    var childElm = (child instanceof objectTree) ? child.render() : document.createTextNode(child)
    elm.appendChild(childElm)
  })

  return elm
}

我们就可以将生成好的DOM树插入到文档里了

var ul = new objectTree(\'ul\', {id: \'list\'}, [
  new objectTree(\'li\', {class: \'item\'}, [\'Item 1\']),
  new objectTree(\'li\', {class: \'item\'}, [\'Item 2\']),
  new objectTree(\'li\', {class: \'item\'}, [\'Item 3\'])
])

console.log(ul)

document.body.appendChild(ul.render())

我们生成的DOM已经添加到文档里了

3.比较两个对象树的差异


所谓Virtual DOM的diff算法,就是比较两个对象树的差异,也正是Virtual DOM的核心。

传统的比较两棵树差异的算法,时间复杂度是O(n^3),大量操作DOM的时候肯定是接受不了的。所以React做了妥协,React结合WEB界面的特点,做了两个简单的假设,使得算法的复杂度降低到了O(n)。

  1. 相同的组件产生相似的DOM树,不同的组件产生不同的DOM树。

  2. 对于同一层次的一组子节点,它们可以通过唯一的id进行区分。

不同节点类型的比较

不同节点类型分为两种情况:

  1. 节点类型不同。

  2. 节点类型相同,但是属性不同。

先看第一种情况,如果是我们会怎么做呢?肯定是直接删除老的节点,然后在老节点的位置上将新节点插入。React也和我们的想法一样,也符合我们对真实DOM操作的理解。

如果将老节点删除,那么老节点的子节点也同时被删除,并且子节点也不会参与后续的比较。这也是算法复杂度能降低到O(n)的原因之一。

既然节点类型不同是这样操作的,那么组件也是一样的逻辑了。应用第一个假设,不同组件之间有不同的DOM树,与其花时间比较它们的DOM结构,还不如创建一个新的组件加到原来的组件上。

从不同节点的操作上我们可以推断,React的diff算法是只对对象树逐层比较。

逐层进行节点比较

在React中对树的算法非常简单,那就是对两棵树同一层次的节点进行比较。

有一张非常经典的图:

React只会对相同颜色方框内的DOM节点进行比较,即同一个父节点下的所有子节点。当发现节点已经不存在,则该节点及其子节点会被完全删除掉,不会用于进一步的比较。这样只需要对树进行一次遍历,便能完成整个DOM树的比较。

考虑下如果有这样的DOM结构的变化:

我们想的操作是:R.remove(A), D.append(A)

但是因为React只会对同一层次的节点进行比较,当发现新的对象树中没有A节点时,就会完全删除A,同理,会新创建一个A节点作为D的子节点。实际React的操作是:A.destroy(), A = new A(), A.append(new B()), A.append(new C()), D.append(A)

由此我们可以根据React只对同一层次的节点比较可以作出的优化是:尽量不要跨层级的修改DOM

相同节点类型的比较

刚才我们说过,相通节点类型属性可能不同,React会对属性进行重设,但要注意:Virtual DOM中style必须是个对象。

renderA: <div style={{color: \'red\'}} />
renderB: <div style={{fontWeight: \'bold\'}} />
=> [removeStyle color], [addStyle font-weight \'bold\']

key值的使用

我们经常在遍历一个数组或列表需要一个标识一个唯一的key,这个key是干什么的呢?

这是初始视图:

我们现在想在它们中间加一个F,也就是一个insert操作。

如果每个节点没有一个唯一的key,React不能识别每个节点,那React就会将C更新成F,将D更新成C,最后在末尾插入一个D。

如果每个节点有一个唯一的key做标识,React会找到正确的位置去插入新的节点,从而提高了视图更新的效率。

对于key我们可以给出的优化是:给每个列表元素加上一个唯一的key

4.diff算法的简单实现


我们先对两棵对象树做一个深度优先的遍历,这样每一个节点都有一个唯一的标记:

在深度优先遍历的时候,每遍历到一个节点就把该节点和新的的树进行对比。如果有差异的话就记录到一个对象里面。

// diff 函数,对比两棵树
function diff (oldTree, newTree) {
  var index = 0 // 当前节点的标志
  var patches = {} // 用来记录每个节点差异的对象
  dfsWalk(oldTree, newTree, index, patches)
  return patches
}

// 对两棵树进行深度优先遍历
function dfsWalk (oldNode, newNode, index, patches) {
  // 对比oldNode和newNode的不同,记录下来
  patches[index] = [...]

  diffChildren(oldNode.children, newNode.children, index, patches)
}

// 遍历子节点
function diffChildren (oldChildren, newChildren, index, patches) {
  var leftNode = null
  var currentNodeIndex = index
  oldChildren.forEach(function (child, i) {
    var newChild = newChildren[i]
    currentNodeIndex = (leftNode && leftNode.count) // 计算节点的标识
      ? currentNodeIndex + leftNode.count + 1
      : currentNodeIndex + 1
    dfsWalk(child, newChild, currentNodeIndex, patches) // 深度遍历子节点
    leftNode = child
  })
}

例如,上面的div和新的div有差异,当前的标记是0,那么

patches[0] = [{difference}, {difference}, ...] // 用数组存储新旧节点的不同

那我们所说的差异是什么呢?

  1. 节点被替换

  2. 增加、删除、移动子节点

  3. 修改了节点的属性

  4. 若是文本节点,则文本内容可能会被改变

所以我们定义了几种类型:

var REPLACE = 0
var REORDER = 1
var PROPS = 2
var TEXT = 3

举个例子,如果最外层的div被换成了section,则相应的记录如下:

patches[0] = [{
  type: REPALCE,
  node: newNode // el(\'section\', props, children)
}]

其他变化同理。

5.patch方法的实现


我们比较完了两棵对象树的差异,接下来就是将差异应用到DOM上了。这个过程有点像打补丁,所以我们叫它patch。

我们第一步构建出来的对象树和真正的DOM树的属性、结构是一样的,所以我们可以对DOM树进行一次深度优先遍历,遍历的时候按着diff生成的patch对象进行patch操作,修改需要patch的地方。

我们还要根据不同的差异进行不同的DOM操作。

function patch (node, patches) {
  var walker = {index: 0}
  dfsWalk(node, walker, patches)
}

function dfsWalk (node, walker, patches) {
  var currentPatches = patches[walker.index] // 从patches拿出当前节点的差异

  var len = node.childNodes
    ? node.childNodes.length
    : 0
  for (var i = 0; i < len; i++) { // 深度遍历子节点
    var child = node.childNodes[i]
    walker.index++
    dfsWalk(child, walker, patches)
  }

  if (currentPatches) {
    applyPatches(node, currentPatches) // 对当前节点进行DOM操作
  }
}

function applyPatches (node, currentPatches) {
  currentPatches.forEach(function (currentPatch) {
    switch (currentPatch.type) {
      case REPLACE:
        node.parentNode.replaceChild(currentPatch.node.render(), node)
        break
      case REORDER:
        reorderChildren(node, currentPatch.moves)
        break
      case PROPS:
        setProps(node, currentPatch.props)
        break
      case TEXT:
        node.textContent = currentPatch.content
        break
      default:
        throw new Error(\'Unknown patch type \' + currentPatch.type)
    }
  })
}

看过了别人的文章,也借鉴了别人的思想,加上自己的总结,代码正在整理中。

以上是关于Virtual DOM的简单实现的主要内容,如果未能解决你的问题,请参考以下文章

深度剖析:如何实现一个 Virtual DOM 算法

vue 之 Virtual Dom

实现一个 Virtual DOM 算法

Virtual DOM 算法

虚拟DOM (virtual DOM)

深度剖析:如何实现一个 Virtual DOM 算法 #13