读书笔记: 博弈论导论 - 12 - 不完整信息的静态博弈 贝叶斯博弈
贝叶斯博弈(Bayesian Games)
本文是Game Theory An Introduction (by Steven Tadelis) 的学习笔记。
不完整信息的静态博弈(Incomplete information static games)
不完整信息博弈意味着玩家之间缺乏共识(common knowledge),具体指的是其它对手的行动集、结果集和收益函数等信息。
对不完整信息博弈的处理方法来自于Harsanyi。
他引进了两个概念来解决这个问题。
type space: 将对手隐藏的信息(行动集、结果集和收益函数等)转化为多个types,每个type中的信息都是可知的。
belief: 由于不知道对手的具体type是什么,因此使用分布概率表示对手选择某个type的可能性。
这样就可以通过概率统计来计算可能的收益。
- 静态不完整信息贝叶斯博弈(static Bayesian game of incomplete information)的normal-form描述
-
静态不完整信息贝叶斯博弈处理流程:
- 自然选择一个类型组合(profile of types)\\(\\theta_1, \\theta_2, \\cdots, \\theta_n\\)。
- 每个玩家知道自己\\(\\theta_i\\),使用先前的\\(\\phi_i\\)来形成对对手type的分布概率。
- 玩家选择行动。
- 根据玩家们的行动\\(a = (a_i, a_2, \\cdots, a_n)\\),可以或者收益\\(v_i(a; \\theta)\\).
-
条件概率(conditional probability)
当事件S发生时,事件H发生的条件概率为:
- 静态不完整信息贝叶斯博弈 - 纯策略
玩家i的一个纯策略\\(s_i(\\theta_i) \\to a_i\\)
-
静态不完整信息贝叶斯博弈 - 混合策略
玩家i的一个混合策略是一个在纯策略之上的概率分布。 -
静态不完整信息贝叶斯博弈 - 纯策略贝叶斯纳什均衡(pure-strategy Bayesian Nash equilibrium)
一个纯策略贝叶斯纳什均衡\\(s^* = (s_1^*, \\cdots, s_n^*)\\),如果对于每个玩家i,每个玩家的类型\\(\\theta_i \\in \\Theta_i\\),每个行动\\(a_i \\in A_i\\),满足:
其含义:对于每个玩家,其行动\\(s_i^*(\\theta_i)\\)的分布概率收益总和总是最大的。
关于这章(甚至整本书),重要的是学会如何使用这些理论,书中提供了很好的示例。但这里就不介绍了。
参照
- Game Theory An Introduction (by Steven Tadelis)
- 读书笔记: 博弈论导论 - 01 - 单人决策问题
- 读书笔记: 博弈论导论 - 02 - 引入不确定性和时间
- 读书笔记: 博弈论导论 - 03 - 完整信息的静态博弈 预备知识
- 读书笔记: 博弈论导论 - 04 - 完整信息的静态博弈 理性和公共知识
- 读书笔记: 博弈论导论 - 05 - 完整信息的静态博弈 纳什均衡
- 读书笔记: 博弈论导论 - 06 - 完整信息的静态博弈 混合的策略
- 读书笔记: 博弈论导论 - 07 - 完整信息的动态博弈 预备知识
- 读书笔记: 博弈论导论 - 08 - 完整信息的动态博弈 可信性和序贯理性
- 读书笔记: 博弈论导论 - 09 - 完整信息的动态博弈 多阶段博弈
- 读书笔记: 博弈论导论 - 10 - 完整信息的动态博弈 重复的博弈
- 读书笔记: 博弈论导论 - 11 - 完整信息的动态博弈 战略协议
- 读书笔记: 博弈论导论 - 12 - 不完整信息的静态博弈 贝叶斯博弈
- Nash bargaining solution