Spark2.0 Pipelines

Posted 大葱拌豆腐

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark2.0 Pipelines相关的知识,希望对你有一定的参考价值。

MLlib中众多机器学习算法API在单一管道或工作流中更容易相互结合起来使用。管道的思想主要是受到scikit-learn库的启发。 
ML API使用Spark SQL中的DataFrame作为机器学习的数据集。DataFrame不同的列可以分别存储文本,特征向量,真实的Lables,和预测值。

    • Transformer:一个Transformer是一个算法,可以将一个DataFrame转换为另一个DataFrame。如将一个带特征值的DataFrame转换为带预测值的DataFrame。
    • Estimator:Estimator在一个DataFrame上完成Transformer转换过程。如一个学习算法就是一个Estimator,该Estimator应用在测试DataFrame上,完成模型的训练过程。
    • Pipelie:将多个Transformers和 Estimators 串在一起,以完成某个特定的机器学习工作流程。
    • 参数:全部Transformers和 Estimators 共享通用的API,以完成各自特定参数的设置。

MLlib standardizes APIs for machine learning algorithms to make it 
easier to combine multiple algorithms into a single pipeline, or 
workflow. This section covers the key concepts introduced by the 
Pipelines API, where the pipeline concept is mostly inspired by the 
scikit-learn project.

DataFrame: This ML API uses DataFrame from Spark SQL as an ML dataset, which can hold a variety of data types. E.g., a DataFrame could have different columns storing text, feature vectors, true labels, and predictions. 
Machine learning can be applied to a wide variety of data types, such as vectors, text, images, and structured data. This API adopts the DataFrame from Spark SQL in order to support a variety of data types.

DataFrame supports many basic and structured types; see the Spark SQL datatype reference for a list of supported types. In addition to the types listed in the Spark SQL guide, DataFrame can use ML Vector types.

A DataFrame can be created either implicitly or explicitly from a 
regular RDD. See the code examples below and the Spark SQL programming guide for examples.

Columns in a DataFrame are named. The code examples below use names such as “text,” “features,” and “label.”

Transformer: A Transformer is an algorithm which can transform one 
DataFrame into another DataFrame. E.g., an ML model is a Transformer 
which transforms a DataFrame with features into a DataFrame with 
predictions.

Estimator: An Estimator is an algorithm which can be fit on a 
DataFrame to produce a Transformer. E.g., a learning algorithm is an 
Estimator which trains on a DataFrame and produces a model.

Pipeline: A Pipeline chains multiple Transformers and Estimators 
together to specify an ML workflow. Parameter: All Transformers and 
Estimators now share a common API for specifying parameters.

以上是关于Spark2.0 Pipelines的主要内容,如果未能解决你的问题,请参考以下文章

Spark2.0啥时候使用rdd?

cloudera上面安装Spark2.0

Spark2.0学习记录

Spark2.0 读写ES数据(scala)——elasticsearch6.5.4

Spark2.0 shuffle service

基于spark2.0整合spark-sql + mysql + parquet + HDFS