tensorflow添加层-老鱼学tensorflow

Posted 曾想技术改变世界,不料世界改变了我们

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow添加层-老鱼学tensorflow相关的知识,希望对你有一定的参考价值。

本节主要定义个添加层的函数,在深度学习中是通过创建多层神经网络来实现的,因此添加层的函数会被经常用到:

import tensorflow as tf


def add_layer(inputs, in_size, out_size, activation_function=None):
    """
    添加层
    :param inputs: 输入数据
    :param in_size: 输入数据的列数
    :param out_size: 输出数据的列数
    :param activation_function: 激励函数
    :return:
    """

    # 定义权重,初始时使用随机变量,可以简单理解为在进行梯度下降时的随机初始点,这个随机初始点要比0值好,因为如果是0值的话,反复计算就一直是固定在0中,导致可能下降不到其它位置去。
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    # 偏置shape为1行out_size列
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    # 建立神经网络线性公式:inputs * Weights + biases,我们大脑中的神经元的传递基本上也是类似这样的线性公式,这里的权重就是每个神经元传递某信号的强弱系数,偏置值是指这个神经元的原先所拥有的电位高低值
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        # 如果没有设置激活函数,则直接就把当前信号原封不动地传递出去
        outputs = Wx_plus_b
    else:
        # 如果设置了激活函数,则会由此激活函数来对信号进行传递或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs

本节先到这里。

以上是关于tensorflow添加层-老鱼学tensorflow的主要内容,如果未能解决你的问题,请参考以下文章

tensorflow建造神经网络-老鱼学tensorflow

tensorflow例子-老鱼学tensorflow

tensorflow 传入值-老鱼学tensorflow

tensorflow安装-老鱼学tensorflow

tensorflow Tensorboard可视化-老鱼学tensorflow

tensorflow分类-老鱼学tensorflow