带修改的主席树:
原本的主席树是维护了一个线段树前缀。
那么前缀有没有想到什么东西? 树状数组\(Bits\)是不是很 ...... ?
那么现在,我们用树状数组套主席树,不就可以实现带修改的可持久化了吗。
具体来说 \(T[1]维护rt[1]\) , \(T[2]维护rt[1]、rt[2]\) , \(T[3]维护rt[3]\) ......
就与树状数组是一样的。
那么现在,两个具体的操作:
修改:
修改需要修改\(logN\)棵主席树,将涉及修改节点的\(log\)个主席树先删后加点即可。
具体来说,修改x位置的,则要修改:for(x; x; x -= (x&-x))Update(rt[x]);
查询:
考虑一下树状数组的查询,是用到了两个前缀相减的方法。
那么这里也是一样的,查询\([L,R]\)就是\([1,R]\)的值减去\([1,(L-1)]\)的值。
具体来说,对于\([L,R]\)区间对应的主席树,每个点的sum值为:
\[Sum[ro] = ∑sum[ro[u]] - ∑sum[ro[v]];u∈[1,R],v∈[1,L-1]\]
那么以查询第区间第\(k\)大为例子,直接将\(k\)与节点的\(Sum\)值比较即可。
总复杂度:
时间复杂度:\(O(NLog^2N)\) , 空间复杂度\(O(NLog^2N)\)