R语言基础篇——数据对象与数据读写

Posted 爽朗的sunmeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言基础篇——数据对象与数据读写相关的知识,希望对你有一定的参考价值。

1、基本数据类型(numeric,logical,character,NA,double,complex,integer)

2、日期变量

常用函数

Sys.Date()-返回系统当前的日期,Sys.time()-返回系统当前的日期和时间,date()-返回系统当前的日期和时间,

as.Date()-将字符串形式的日期值转换为日期变量,as.Date(x,format="",...)

as.POSIXllt()-将字符串转化为包含时间及时区的日期变量,as.POSIXllt(x,tz="",format)

strptime()-将字符串变量转换为包含时间的日期变量,strptime(x,format,tz="")

strfttime()-将日期变量转换为指定格式的字符串变量,strfttime(x,format)

format()-将日期变量转换为指定格式的字符串变量,format(x,...)

3、查看对象的类型

class()、mode()、typeof()

4、数据结构

(1)向量

向量创建:c()函数创建向量

向量索引:#下标方式索引 vector<-c(1,2,3,4)  vector[1]   vector[c(1:3)]

     #按名称索引 names(vector)<-c("one","two","three","four")     vector[c("one","two")]

     #which方式索引  which(vector==1) which(vector==c(1,2))   which.max(vector)

       #subser方式索引  subset(vector,vector>2&vector<4)

     #%in%方式索引  c(1,5)%in%vector

向量编辑 : #向量扩展(x<-c(x,c(5,6,7)))  #单个元素的删除  x<-x[-1]   #多个元素的删除  (x<-x[c(3:5)])

向量排序:sort(x,decreasing = FALSE,na.last = TRUE...)      倒序——rev()函数

等差数列的建立:seq(from = 1, to = 1, by =  ((to - from)/length.out - 1),length.out = NULL,...)   seq(1,-9,by = -2)

重复数列的建立:rep(x,times=1,length.out=NA,each=1)    rep(1:3, each=2, times=2)  112233112233112233

(2)矩阵

创建矩阵:matrix(data=NA,nrow=1,ncol=1,byrow=FALSE,dimnames=NULL)

x<-c(1:9)

a<-matrix(x,nrow=5,ncol=2,byrow=FAlSE,dimnames=list(c("r1","r2","r3","r4","r5"),c("c1","c2")))

矩阵和转换为向量:as.vector(),转换为向量时元素按列读取数据

矩阵索引:#根据位置索引   a[2,1]

     #根据行和列的名称索引 a["r2","c2"]

     #使用一维下标索引  a[,2] 

     #使用数值型向量索引 a[c(3:5),2]

矩阵编辑:#矩阵合并(a1<-rbind(a,c(11,12))) (a2<-rbind(a,c(11:15)))

     #删除矩阵中元素  a5<-a[-1,]  #删除矩阵中的第一行

矩阵的运算:colSums()-对矩阵的各列求和  rowSums()-对矩阵的各行求和   colMeans()-对矩阵各列求均值  rowMeans()-对矩阵各行求均值

      t()-矩阵行列转换   det()-求解矩阵的行列式   crossprod()-求解两个矩阵的内积   outer()-求解矩阵的外积  %*%-矩阵乘法

      diag()-对矩阵取对角元素    solve()-对矩阵求解逆矩阵  eigen()-对矩阵求解特征值和特征向量

(3)数组

创建数组:array(data,dim=length(data),dimnames=NULL)

x<-c(1:9)  

dim1<-c("A1","A2","A3")

dim2<-c("B1","B2","B3","B4","B5")

dim3<-c("C1","C2")

a<-array(x,dim=c(3,5,2),dimnames=list(dim1,dim2,dim3))

数组索引:#按下标索引  a[2,4,2]

     #按维度名称索引a["A2","B3","C1"]

             #查看数组的维度  dim(a)

(4)数据框

创建数据框:data.frame()

#向量组成数据框

data_iris<-data.frame(s.length=c(1,1,1,1),s.width=c(2,2,2,2),w.length=c(3,3,3,3),w.width=c(4,4,4,4))

#矩阵组成数据框

data_matrix<-matrix(c(1:8),c(4,2))

data_iris2<-data.frame(data_matrix)

数据框索引:#列索引  data_iris[,1]     ||     data_iris$s.length    ||    data_iris["s,length"]

                     #行索引   data_iris[1,]   || data_iris[1:3,]

       #元素索引  data_iris[1,1]         data_iris$s.length[1]       data_iris["s,length"][1]

       #subset索引  subset(data_iris, s.length=1)

       #sqldf函数索引  library(sqldf)  newdf<-sqldf("select * from mtcars where carb=1 order by mpg",row.names=TRUE)

数据框编辑:#增加新的样本数据  data_iris<-rbind(data_iris,list(9,9,9,9))

      #增加数据集的新属性变量  data_iris<-rbind(data_iris,Species=rep(7,5))

 

以上是关于R语言基础篇——数据对象与数据读写的主要内容,如果未能解决你的问题,请参考以下文章

全栈测试 一 | py3基础 三 :file对象测试数据的读写与操作

5分钟学习R语言的数据类型及表格读写

R语言数据对象与运算

R语言游戏数据分析与挖掘:为啥要对游戏进行分析

R语言实战应用精讲50篇(十三)-如何使用JAVA调用R语言,两种语言的完美结合

python基础-文件读写'r' 和 'rb'区别