Python机器学习库sciki-earn实践

Posted hudongni1

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python机器学习库sciki-earn实践相关的知识,希望对你有一定的参考价值。

用Anaconda的spyder:新建train_test.py

#!usr/bin/env python  
#-*- coding: utf-8 -*-  
  
import sys  
import os  
import time  
from sklearn import metrics  
import numpy as np  
import cPickle as pickle  
  
reload(sys)  
sys.setdefaultencoding(utf8)  
  
# Multinomial Naive Bayes Classifier  
def naive_bayes_classifier(train_x, train_y):  
    from sklearn.naive_bayes import MultinomialNB  
    model = MultinomialNB(alpha=0.01)  
    model.fit(train_x, train_y)  
    return model  
  
  
# KNN Classifier  
def knn_classifier(train_x, train_y):  
    from sklearn.neighbors import KNeighborsClassifier  
    model = KNeighborsClassifier()  
    model.fit(train_x, train_y)  
    return model  
  
  
# Logistic Regression Classifier  
def logistic_regression_classifier(train_x, train_y):  
    from sklearn.linear_model import LogisticRegression  
    model = LogisticRegression(penalty=l2)  
    model.fit(train_x, train_y)  
    return model  
  
  
# Random Forest Classifier  
def random_forest_classifier(train_x, train_y):  
    from sklearn.ensemble import RandomForestClassifier  
    model = RandomForestClassifier(n_estimators=8)  
    model.fit(train_x, train_y)  
    return model  
  
  
# Decision Tree Classifier  
def decision_tree_classifier(train_x, train_y):  
    from sklearn import tree  
    model = tree.DecisionTreeClassifier()  
    model.fit(train_x, train_y)  
    return model  
  
  
# GBDT(Gradient Boosting Decision Tree) Classifier  
def gradient_boosting_classifier(train_x, train_y):  
    from sklearn.ensemble import GradientBoostingClassifier  
    model = GradientBoostingClassifier(n_estimators=200)  
    model.fit(train_x, train_y)  
    return model  
  
  
# SVM Classifier  
def svm_classifier(train_x, train_y):  
    from sklearn.svm import SVC  
    model = SVC(kernel=rbf, probability=True)  
    model.fit(train_x, train_y)  
    return model  
  
# SVM Classifier using cross validation  
def svm_cross_validation(train_x, train_y):  
    from sklearn.grid_search import GridSearchCV  
    from sklearn.svm import SVC  
    model = SVC(kernel=rbf, probability=True)  
    param_grid = {C: [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], gamma: [0.001, 0.0001]}  
    grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)  
    grid_search.fit(train_x, train_y)  
    best_parameters = grid_search.best_estimator_.get_params()  
    for para, val in best_parameters.items():  
        print para, val  
    model = SVC(kernel=rbf, C=best_parameters[C], gamma=best_parameters[gamma], probability=True)  
    model.fit(train_x, train_y)  
    return model  
  
def read_data(data_file):  
    import gzip  
    f = gzip.open(data_file, "rb")  
    train, val, test = pickle.load(f)  
    f.close()  
    train_x = train[0]  
    train_y = train[1]  
    test_x = test[0]  
    test_y = test[1]  
    return train_x, train_y, test_x, test_y  
      
if __name__ == __main__:  
    data_file = "mnist.pkl.gz"  
    thresh = 0.5  
    model_save_file = None  
    model_save = {}  
      
    test_classifiers = [NB, KNN, LR, RF, DT, SVM, GBDT]  
    classifiers = {NB:naive_bayes_classifier,   
                  KNN:knn_classifier,  
                   LR:logistic_regression_classifier,  
                   RF:random_forest_classifier,  
                   DT:decision_tree_classifier,  
                  SVM:svm_classifier,  
                SVMCV:svm_cross_validation,  
                 GBDT:gradient_boosting_classifier  
    }  
      
    print reading training and testing data...  
    train_x, train_y, test_x, test_y = read_data(data_file)  
    num_train, num_feat = train_x.shape  
    num_test, num_feat = test_x.shape  
    is_binary_class = (len(np.unique(train_y)) == 2)  
    print ******************** Data Info *********************  
    print #training data: %d, #testing_data: %d, dimension: %d % (num_train, num_test, num_feat)  
      
    for classifier in test_classifiers:  
        print ******************* %s ******************** % classifier  
        start_time = time.time()  
        model = classifiers[classifier](train_x, train_y)  
        print training took %fs! % (time.time() - start_time)  
        predict = model.predict(test_x)  
        if model_save_file != None:  
            model_save[classifier] = model  
        if is_binary_class:  
            precision = metrics.precision_score(test_y, predict)  
            recall = metrics.recall_score(test_y, predict)  
            print precision: %.2f%%, recall: %.2f%% % (100 * precision, 100 * recall)  
        accuracy = metrics.accuracy_score(test_y, predict)  
        print accuracy: %.2f%% % (100 * accuracy)   
  
    if model_save_file != None:  
        pickle.dump(model_save, open(model_save_file, wb))  

结果:

reading training and testing data...
******************** Data Info *********************
#training data: 50000, #testing_data: 10000, dimension: 784
******************* NB ********************
training took 0.558000s!
accuracy: 83.69%
******************* KNN ********************
training took 29.467000s!
accuracy: 96.64%
******************* LR ********************
training took 104.605000s!
accuracy: 91.98%
******************* RF ********************
training took 4.401000s!
accuracy: 93.91%
******************* DT ********************
training took 26.923000s!
accuracy: 87.07%
******************* SVM ********************
training took 3831.564000s!
accuracy: 94.35%
******************* GBDT ********************

在这个数据集中,由于数据分布的团簇性较好(如果对这个数据库了解的话,看它的t-SNE映射图就可以看出来。由于任务简单,其在deep learning界已被认为是toy dataset),因此KNN的效果不赖。GBDT是个非常不错的算法,在kaggle等大数据比赛中,状元探花榜眼之列经常能见其身影。

 

以上是关于Python机器学习库sciki-earn实践的主要内容,如果未能解决你的问题,请参考以下文章

Python机器学习库scikit-learn实践

机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码

《Python机器学习及实践》----监督学习经典模型

《Python机器学习及实践》----监督学习经典模型

《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

《Python机器学习及实践》----模型实用技巧