Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed objec

Posted yuanninesuns

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed objec相关的知识,希望对你有一定的参考价值。

  最近在用python做数据挖掘,在聚类的时候遇到了一个非常恶心的问题。话不多说,直接上代码:

 1 from sklearn.cluster import KMeans
 2 from sklearn.decomposition import PCA
 3 import matplotlib.pyplot as plt  
 4 #kmeans算法
 5 df1=df23
 6 kmeans = KMeans(n_clusters=5, random_state=10).fit(df1)
 7 #贴上每个样本对应的簇类别标签
 8 df1[\'level\']=kmeans.labels_
 9 #df1.to_csv(\'new_df.csv\')
10 
11 df2=df1.groupby(\'level\',as_index=False)[\'level\'].agg({\'num\': np.size})
12 print(df2.head())
13 
14 #将用于聚类的数据的特征的维度降至2维
15 pca = PCA(n_components=2)
16 new_pca = pd.DataFrame(pca.fit_transform(df1))
17 print(new_pca.head())
18  
19 #可视化
20 d = new_pca[df1[\'level\'] == 0]
21 plt.plot(d[0], d[1], \'gv\')
22 d = new_pca[df1[\'level\'] == 1]
23 plt.plot(d[0], d[1], \'ko\')
24 d = new_pca[df1[\'level\'] == 2]
25 plt.plot(d[0], d[1], \'b*\')
26 d = new_pca[df1[\'level\'] == 3]
27 plt.plot(d[0], d[1], \'y+\')
28 d = new_pca[df1[\'level\'] == 4]
29 plt.plot(d[0], d[1], \'c.\')
30 
31 plt.title(\'the result of polymerization\')
32 plt.show()

   错误如下:

  网上找了好久都没找到解决方法,明明之前成功过的。于是我查看了df23数据,发现它是这样的:

 与之前成功的dataframe的唯一差别就是索引!!!重要的事情说三遍!!!索引!!!索引!!!于是乎,我去找怎么重置索引的方法,见代码:

1 df24=df23[["forks_count","has_issues","has_wiki","open_issues_count","stargazers_count","watchers_count","created_pushed_time","created_updated_time"]]
2 df24=df24.reset_index()
3 df24=df24[["forks_count","has_issues","has_wiki","open_issues_count","stargazers_count","watchers_count","created_pushed_time","created_updated_time"]]

  然后聚类就成功了。。。心累。。。。

以上是关于Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed objec的主要内容,如果未能解决你的问题,请参考以下文章