sklearn.learning_curve

Posted 做梦当财神

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn.learning_curve相关的知识,希望对你有一定的参考价值。

学习曲线函数:

from sklearn.learning_curve import learning_curve

调用格式:

learning_curve(estimator, X, y, train_sizes=array([0.1, 0.325, 0.55, 0.775, 1. ]), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch=‘all‘, verbose=0)  

# exploit 开发,开拓  incremental 增加的  dispatch 派遣,分派  verbose 冗长的

参数:

  • estimator:分类器
  • X:训练向量
  • y:目标相对于X分类或者回归
  • train_sizes:训练样本相对的或绝对的数字,这些量的样本将会生成learning curve。
  • cv:确定交叉验证的分离策略(None:使用默认的3-fold cross-validation;integer:确定几折交叉验证)
  • verbose:整型,可选择的。控制冗余:越高,有越多的信息。

返回值:

train_sizes_abs:生成learning curve的训练集的样本数。重复的输入会被删除。

train_scores:在训练集上的分数

test_scores:在测试集上的分数

 

以上是关于sklearn.learning_curve的主要内容,如果未能解决你的问题,请参考以下文章